广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (5): 104-126.doi: 10.16088/j.issn.1001-6600.2022020702

• 综述 • 上一篇    下一篇

三维微分系统的极限环与等时中心

黄文韬1*, 古结平2, 王勤龙3   

  1. 1.广西师范大学 数学与统计学院, 广西 桂林 541006;
    2.广西职业师范学院 教育学院, 广西 南宁 530007;
    3.桂林电子科技大学 数学与计算科学学院, 广西 桂林 541004
  • 收稿日期:2022-02-07 修回日期:2022-04-12 出版日期:2022-09-25 发布日期:2022-10-18
  • 通讯作者: 黄文韬(1966—), 男, 广西永福人, 广西师范大学教授, 博导。E-mail: huangwentao@163.com
  • 基金资助:
    国家自然科学基金(12061016, 12161023); 广西科技计划项目(2021AC06001); 广西高校中青年教师科研基础能力提升项目(2022KY0904)

Limit Cycles and Isochronous Centers of Three-dimensional Differential Systems

HUANG Wentao1*, GU Jieping2, WANG Qinlong3   

  1. 1. School of Mathematics and Statistics, Guangxi Normal University, Guilin Guangxi 541006, China;
    2. School of Education, Guangxi Vocational Normal University, Nanning Guangxi 530007, China;
    3. School of Mathematics and Computational Science,Guilin University of Electronic Technology, Guilin Guangxi 541004, China
  • Received:2022-02-07 Revised:2022-04-12 Online:2022-09-25 Published:2022-10-18

摘要: 微分动力系统的极限环与等时中心是微分方程定性理论中2个经典问题,也是微分方程定性理论领域的研究热点,其研究有重要理论意义和应用价值。相较于平面系统,三维微分系统的极限环与等时中心研究也是一项有挑战性的工作,系统复杂度与定性分析难度都有很大提升。本文主要介绍近几十年来三维微分系统的极限环与等时中心的研究进展,并给出该领域一些待解决的问题。

关键词: 三维微分系统, 极限环, 等时中心, 中心流形, Hopf分支

Abstract: Bifurcation of limit cycle and isochronous center of differential systems are classical problems in the qualitative theory of differential equations which are always hot topic in the research of differential equations. The study has important theoretical and applied value. Compared with planar systems, the research of limit cycle and isochronous center for three-dimensional differential systems is a more challenging work, and the complexity of the system and the difficulty of qualitative analysis have greatly been improved. This paper mainly introduces the research progress of limit cycles and isochronous centers of three-dimensional differential systems in recent decades, and puts forward some problems to be solved in this field.

Key words: three-dimensional differential system, limit cycle, isochronous center, center manifold, Hopf bifurcation

中图分类号: 

  • O175
[1]POINCARÉ H. Mémoire sur les courbes définies par les équation différentielle[J]. Journal de Mathématiques Pures et Appliquées, 1882, 8: 251-296.
[2]HILBERT D. Mathematical problems[J]. Bulletin of the American Mathematical Society, 1902, 8: 437-479.
[3]ILYASHENKO Y. Centennial history of Hilbert’s 16th problem[J]. Bulletin of the American Mathematical Society, 2002, 39(3): 301-354.
[4]LI J B. Hilbert’s 16th problem and bifurcations of planar polynomial vector fields[J]. International Journal of Bifurcation and Chaos, 2003, 13(1): 47-106.
[5]ZOLADEK H. Quadratic systems with center and their perturbations[J]. Journal of Differential Equations, 1994, 109(2): 223-273.
[6]GINÉ J. Conditions for the existence of a center for the Kukles homogeneous systems[J]. Computers and Mathematics with Applications, 2002, 43(10/11): 1261-1269.
[7]ROMANOVSKIC V G, SHAFER D S. The center and cyclicity problems: a computational algebra approach[M]. Boston: Birkhäuser Boston Ltd, 2009.
[8]NEEDHAM D J. A centre theorem for two-dimensional complex holomorphic systems and its generalizations[J]. Proceedings of the Royal Society A, 1995, 450(1939): 225-232.
[9]CHICONE C, JACOBS M. Bifurcation of critical periods for plane vector fields[J]. Transactions of the American Mathematical Society, 1989, 312(2): 433-486.
[10]CHAVARRIGA J, GINÉ J, GARCÍA I A. Isochronous centers of a linear center perturbed by fourth degree homogeneous polynomial[J]. Bulletin des Sciences Mathématiques, 1999, 123(2): 77-96.
[11]CHAVARRIGA J, GINÉ J, GARCÍA I A. Isochronous centers of a linear center perturbed by fifth degree homogeneous polynomial[J]. Journal of Computational and Applied Mathematics, 2000, 126(1/2): 351-368.
[12]LLIBRE J, ROMANOVSKIC V G. Isochronicity and linearizability of planar polynomial Hamiltonian systems[J]. Journal of Differential Equations, 2015, 259(5): 1649-1662.
[13]LIU Y R, HUANG W T. A new method to determine isochronous center conditions for polynomial differential systems[J]. Bulletin des Sciences Mathématiques, 2003, 127(2): 133-148.
[14]ZHANG W J, WAHL L M, YU P. Viral blips may not need a trigger: how transient viremia can arise in deterministic in-host models[J]. SIAM Review, 2014, 56(1): 127-155.
[15]LIU Y J. Analysis of global dynamics in an unusual 3D chaotic system[J]. Nonlinear Dynamics, 2012, 70(3): 2203-2212.
[16]WANG Q L, LIU Y R, CHEN H B. Hopf bifurcation for a class of three-dimensional nonlinear dynamic systems[J]. Bulletin des Sciences Mathématiques, 2010, 134(7): 786-798.
[17]TIAN Y, YU P. An explicit recursive formula for computing the normal form and center manifold of general n-dimensional differential systems associated with Hopf bifurcation[J]. International Journal of Bifurcation and Chaos, 2013, 23(6): 1350104.
[18]ROMANOVSKI V G, SHAFER D S. Computation of focus quantities of three-dimensional polynomial systems[J]. Journal of Shanghai Normal University (Natural Sciences: Mathematics), 2014, 43(5): 529-544.
[19]TIAN Y, YU P. Seven limit cycles around a focus point in a simple three-dimensional quadratic vector field[J]. International Journal of Bifurcation and Chaos, 2014, 24(6): 1450083.
[20]BAUTIN N N. On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type[J]. Mathematics Sbornik, 1952, 30(72): 181-196.
[21]YU P, HAN M A. Ten limit cycles around a center-type singular point in a 3-d quadratic system with quadratic perturbation[J]. Applied Mathematics Letters, 2015, 44: 17-20.
[22]SÖNCHEZ-SÖNCHEZ I, TORREGROSA J. Hopf bifurcation in 3-dimensional polynomial vector fields[J]. Communications in Nonlinear Science and Numerical Simulation, 2022, 105(3): 106068.
[23]DU C X, WANG Q L, LIU Y R. Limit cycles bifurcations for a class of 3-dimensional quadratic systems[J]. Acta Applicandae Mathematicae, 2015, 136(1): 1-18.
[24]DU C X, LIU Y R, HUANG W T. A class of three-dimensional quadratic systems with ten limit cycles[J]. International Journal of Bifurcation and Chaos, 2016, 26(9): 1650149.
[25]GUO L G, YU P, CHEN Y F. Twelve limit cycles in 3d quadratic vector fields with Z3 symmetry[J]. International Journal of Bifurcation and Chaos, 2018, 28(11): 1850139.
[26]GUO L G, YU P, CHEN Y F. Bifurcation analysis on a class of three-dimensional quadratic systems with twelve limit cycles[J]. Applied Mathematics and Computation, 2019, 363: 124577.
[27]LI Y J, ROMANOVSKI V G. Integrability and limit cycles of a symmetric 3-dim quadratic system[J]. Journal of Applied Analysis and Computation, 2021, 11(5): 2230-2244.
[28]EDNERAL V F, MAHDI A, ROMANOVSKIC V G. The center problem on a center manifold in R3[J]. Nonlinear Analysis: Theory, Methods & Applications, 2012, 75(4): 2614-2622.
[29]FERCEC B, MENCINGER M, SLOVENIAL. Isochronicity of centers at a center manifold[J]. AIP Conference Proceedings, 2012, 1468(1): 148-157.
[30]ROMANOVSKI V G, MENCINGER M, FERCEC B. Investigation of center manifolds of three-dimensional systems using computer algebra[J]. Programming and Computer Software, 2013, 39(2): 67-73.
[31]HU Z P, ALDAZHAROVA M, ALDIBEKOV T M, et al. Integrability of 3-dim polynomial systems with three invariant planes[J]. Nonlinear Dynamics, 2013, 74(4): 1077-1092.
[32]WANG Q L, HUANG W T, DU C X. The isochronous center on center manifolds for three dimensional differential systems[EB/OL]. (2019-12-10)[2022-02-07]. https://arxiv.org/abs/1912.05037.
[33]LI Y J, ROMANOVSKI V G. Isochronous solutions of a 3-dim symmetric quadratic system[J]. Applied Mathematics and Computation, 2021, 405: 126250.
[34]BRAUER F, CASTILLO-CHÖVEZ C. Mathematical models in population biology and epidemiology[M]. Now York: Springer, 2001.
[35]DU C X, WANG Q L, HUANG W T. Three-dimensional Hopf bifurcation for a class of cubic Kolmogorov model[J]. International Journal of Bifurcation and Chaos, 2014, 24(3): 1450036.
[36]ANDRONOV A A, LEONTOVICH E A, GORDON I I, et al. Qualitative theory of second-order dynamic systems[M]. New York: Wiley, 1973.
[37]DARDINI L, LUPINI R, MESSIA M G. Hopf bifurcation and transition to chaos in Lotka-Volterra equation[J]. Journal of Mathematical Biology, 1989, 27(3): 259-272.
[38]COSTE J, PEYRAUD J, COULLET P. Asymptotic behaviours in the dynamics of competing species[J]. SIAM Journal on Applied Mathematics, 1979, 36(3): 516-543.
[39]HIRSCH M W. Systems of differential equations which are competitive or cooperative: Ⅲ. Competing species[J]. Nonlinearity, 1988, 1(1): 51-71.
[40]ZEEMAN M L. Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems[J]. Dynamics and Stability of Systems, 1993, 8(3): 189-216.
[41]HOFBAUER J, SO J W H. Multiple limit cycles for three-dimensional Lotka-Volterra equations[J]. Applied Mathematics Letters, 1994, 7(6): 65-70.
[42]XIAO D M, LI W X. Limit cycles for the competitive three-dimensional Lotka-Volterra system[J]. Journal of Differential Equations, 2000, 164(1): 1-15.
[43]LU Z Y, LUO Y. Two limit cycles in three-dimensional Lotka-Volterra systems[J]. Computers and Mathematics with Applications, 2002, 44(1/2): 51-66.
[44]LU Z Y, LUO Y. Three limit cycles for a three-dimensional Lotka-Volterra competitive system with a heteroclinic cycle[J]. Computers and Mathematics with Applications, 2003, 46(2/3): 231-238.
[45]GYLLENBERG M, YAN P, WANG Y. A 3D competitive Lotka-Volterra system with three limit cycles: a falsification of a conjecture by Hofbauer and So[J]. Applied Mathematics Letters, 2006, 19(1): 1-7.
[46]GYLLENBERG M, YAN P. Four limit cycles for a three-dimensional competitive Lotka-Volterra system with a heteroclinic cycle[J]. Computers and Mathematics with Applications, 2009, 58(4): 649-669.
[47]GYLLENBERG M, YAN P. On the number of limit cycles for the three-dimensional Lotka-Volterra systems[J]. Discrete and Continuous Dynamical Systems-B, 2009, 11(2): 347-352.
[48]WANG Q L, HUANG W T, WU H T. Bifurcation of limit cycles for 3D Lotka-Volterra competitive systems[J]. Acta Applicandae Mathematicae, 2011, 114(3): 207-218.
[49]YU P, HAN M A, XIAO D M. Four small limit cycles around a Hopf singular point in 3-dimensional competitive Lotka-Volterra systems[J]. Journal of Mathematical Analysis and Applications, 2016, 436(1): 521-555.
[50]WANG Q L, HUANG W T, LI B L. Limit cycles and singular point quantities for a 3D Lotka-Volterra system[J]. Applied Mathematics and Computation, 2011, 217(21): 8856-8859.
[51]WANG Q L, LU J P, HUANG W T, et al. The center conditions and Hopf cyclicity for a 3D Lotka-Volterra system[J]. Journal of Nonlinear Modeling and Analysis, 2021, 3(1): 1-12.
[52]AZIZ W, CHRISTOPHER C. Local integrability and linearizability of three-dimensional Lotka-Volterra systems[J]. Applied Mathematics and Computation, 2012, 219(8): 4067-4081.
[53]AZIZ W. Integrability and linearizability problems of three dimensional Lotka-Volterra equations of rank-2[J]. Qualitative Theory of Dynamical Systems, 2019, 18(3): 1113-1134.
[54]AZIZ W, CHRISTOPHER C, LLIBRE J, et al. Three dimensional Lotka-Volterra systems with 3∶-1∶2-resonance[J]. Mediterranean Journal of Mathematics, 2021, 18(4): 167.
[55]LORENZ E N. Deterministic nonperiodic flow[J]. Journal of the Atmospheric Sciences, 1963, 20: 130-141.
[56]CHEN G R, UETA T. Yet another chaotic attractor[J]. International Journal of Bifurcation and Chaos, 1999, 9(7): 1465-1466..
[57]LÜ J H, CHEN G R. A new chaotic attractor coined[J]. International Journal of Bifurcation and Chaos, 2002, 12(3): 659-661.
[58]SEGUR H. Solitons and the inverse scattering transform[J]. Topics in Ocean Physics, Edited by OSBORNE A R and MALANOTTE RIZZOLI P (North-Holland, Amsterdam), 1982, 235-277.
[59]TABOR M, WEISS J. Analytic structure of the Lorenz system[J]. Physical Review A, 1981, 24(4): 2157-2167.
[60]STEEB W B. Continuous symmetries of the Lorenz model and the Rikitake two-disc dynamo system[J]. Journal of Physics A: Mathematical and General, 1982, 15(8): L389-L390.
[61]KUS. Integrals of motion for the Lorenz system[J]. Journal of Physics A: Mathematical and General, 1983, 16(18): L689-L691.
[62]GUPTA N. Integrals of motion for the Lorenz system[J]. Journal of Mathematical Physics, 1993, 34(2): 801-804.
[63]LLIBRE J, ZHANG X. Invariant algebraic surfaces of the Lorenz system[J]. Journal of Mathematical Physics, 2002, 43(3): 1622-1645.
[64]ZHANG X. Exponential factors and Darbouxian first integrals of the Lorenz system[J]. Journal of Mathematical Physics, 2002, 43(10): 4987-5001.
[65]LLIBRE J, VALLS C. Formal and analytic integrability of the Lorenz system[J]. Journal of Physics A: Mathematical and General, 2005, 38(12): 2681-2686.
[66]LI C P, CHEN G R. A note on Hopf bifurcation in Chen’s system[J]. International Journal of Bifurcation and Chaos, 2003, 13(6): 1609-1615.
[67]MELLO L F, COELHO S F. Degenerate Hopf bifurcations in the Lü system[J]. Physics Letters A, 2009, 373(12/13): 1116-1120.
[68]MAHDI A, PESSOA C, SHAFER D S. Centers on center manifolds in the Lü system[J]. Physics Letters A, 2011, 375(40): 3509-3511.
[69]LLIBRE J, VALLS C. Polynomial first integrals for the Chen and Lü systems[J]. International Journal of Bifurcation and Chaos, 2012, 22(11): 1250262..
[70]WANG Q L, LI J, HUANG W T. Existence of multiple limit cycles in Chen system[J]. Journal of Applied Analysis and Computation, 2012, 2(4): 441-447.
[71]WANG Q L, HUANG W T. The equivalence between singular point quantities and Liapunov constants on center manifold[J]. Advances in Difference Equations, 2012, 2012: 78.
[72]ALGABA A, DOMÍINUEZ-MORENO M C, MERINO M, et al. Study of the Hopf bifurcation in the Lorenz, Chen and Lü systems[J]. Nonlinear Dynamics, 2015, 79(2): 885-902.
[73]WANG Q L, HUANG W T, FENG J J. Multiple limit cycles and centers on center manifolds for Lorenz system[J]. Applied Mathematics and Computation, 2014, 238: 281-288.
[74]HUANG K Y, SHI S Y, LI W L. Meromorphic and formal first integrals for the Lorenz system[J]. Journal of Nonlinear Mathematical Physics, 2018, 25(1): 106-121.
[75]LI T C, CHEN G R, TANG Y, et al. Hopf bifurcation of the generalized Lorenz canonical form[J]. Nonlinear Dynamics, 2007, 47(4): 367-375.
[76]LIU L L, GAO B, XIAO D M, et al. Identification of focus and center in a 3-dimensional system[J]. Discrete and Continuous Dynamical Systems-B, 2014, 19(2): 485-522.
[77]WU K S, ZHANG X. Darboux polynomials and rational first integrals of the generalized Lorenz systems[J]. Bulletin des Sciences Mathématiques, 2012, 136(3): 291-308.
[78]ALGABA A, FERNÖNDEZ-SÖNCHEZ F, MERINO M, et al. On Darboux polynomials and rational first integrals of the generalized Lorenz system[J]. Bulletin des Sciences Mathématiques, 2014, 138(3): 317-322.
[79]ALGABA A, FERNÖNDEZ-SÖNCHEZ F, MERINO M, et al. Centers on center manifolds in the Lorenz, Chen and Lü systems[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(4): 772-775.
[80]YU P, HAN M A, BAI Y Z. Dynamics and bifurcation study on an extended Lorenz system[J]. Journal of Nonlinear Modeling and Analysis, 2019, 1(1): 107-128.
[81]GARCÍA I A, MAZA S, SHAFER D S. Center cyclicity of Lorenz, Chen and Lü systems[J]. Nonlinear Analysis, 2019, 188: 362-376.
[82]HAN M A, ZHANG W N. On Hopf bifurcation in non-smooth planar systems[J]. Journal of Differential Equations, 2010, 248(9): 2399-2416.
[83]HUAN S M, YANG X S. On the number of limit cycles in general planar piecewise linear systems[J]. Discrete and Continuous Dynamical Systems, 2012, 32(6): 2147-2164.
[84]CHEN X W, ROMANOVSKI V G, ZHANG W N. Degenerate Hopf bifurcations in a family of FF-type switching systems[J]. Journal of Mathematical Analysis and Applications, 2015, 432(2): 1058-1076.
[85]CHEN T, HUANG L H, YU P, et al. Bifurcation of limit cycles at infinity in piecewise polynomial systems[J]. Nonlinear Analysis: Real World Applications, 2018, 41: 82-106.
[86]GUO L G, YU P, CHEN Y F. Bifurcation analysis on a class of Z2-equivariant cubic switching systems showing eighteen limit cycles[J]. Journal of Differential Equations, 2019, 266(2/3): 1221-1244.
[87]YU P, HAN M A, ZHANG X. Eighteen limit cycles around two symmetric foci in a cubic planar switching polynomial system[J]. Journal of Differential Equations, 2021, 275: 939-959.
[88]PENG L P, GAO Y F, FENG Z S. Limit cycles bifurcating from piecewise quadratic systems separated by a straight line[J]. Nonlinear Analysis, 2020, 196: 111802.
[89]FREIRE E, PONCE E, ROS A J. The focus-center-limit cycle bifurcation in symmetric 3D piecewise linear systems[J]. SIAM Journal on Applied Mathematics, 2005, 65(6): 1933-1951.
[90]CARMONA V, FREIRE E, PONCE E, et al. Limit cycle bifurcation in 3D continuous piecewise linear systems with two zones: application to Chua’s circuit[J]. International Journal of Bifurcation and Chaos, 2005, 15(10): 3153-3164.
[91]FREIRE E, PONCE E, ROS J. A biparametric bifurcation in 3D continuous piecewise linear systems with two zones: application to Chua’s circuit[J]. International Journal of Bifurcation and Chaos, 2007, 17(2): 445-457.
[92]PONCE E, ROS J, VELA E. Unfolding the fold-Hopf bifurcation in piecewise linear continuous differential systems with symmetry[J]. Physica D, 2013, 250: 34-46.
[93]MORENO I, SUÖREZ R. Existence of periodic orbits of stable saturated systems[J]. Systems & Control Letters, 2004, 51(3): 293-309.
[94]PONCE E, ROS J. On periodic orbits of 3D symmetric piecewise linear systems with real triple eigenvalues[J]. International Journal of Bifurcation and Chaos, 2009, 19(7): 2391-2399.
[95]LLIBRE J, PONCE E, ROS J. Algebraic determination of limit cycles in a family of three-dimensional piecewise linear differential systems[J]. Nonlinear Analysis: Theory, Methods & Applications, 2011, 74(17): 6712-6727.
[96]FREIRE E, ORDÓÑEZ M, PONCE E. Bifurcations from a center at infinity in 3D piecewise linear systems with two zones[J]. Physica D, 2020, 402(1): 132280.
[97]FREIRE E, PONCE E, ROS J. Hopf bifurcation at infinity in 3D symmetric piecewise linear systems. application to a Bonhoeffer-van der Pol oscillator[J]. Nonlinear Analysis: Real World Applications, 2020, 54: 103112.
[98]GASULL A, GUILLAMON A, MNOSA V. The period function for hamiltonian systems with homogeneous nonlinearities[J]. Journal of Differential Equations, 1997, 139(2): 237-260.
[99]YU P, HAN M A. Critical periods of planar revertible vector field with third-degree polynomial functions[J]. International Journal of Bifurcation and Chaos, 2009, 19(1): 419-433.
[100]林怡平, 李继彬. 平面自治系统的规范型与闭轨族周期临界点[J]. 数学学报(中文版), 1991, 34(4): 490-501.
[1] 张二丽, 邢玉清. 具有不变直线的非Hamilton系统的极限环分支[J]. 广西师范大学学报(自然科学版), 2020, 38(3): 45-51.
[2] 李占勇, 蒋贵荣. 李雅普诺夫分支定理的新结果[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 128-133.
[3] 何东平,黄文韬,王勤龙. 二元机翼系统的极限环颤振与混沌运动[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 87-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张喜龙, 韩萌, 陈志强, 武红鑫, 李慕航. 面向复杂数据流的集成分类综述[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 1 -21 .
[2] 童凌晨, 李强, 岳鹏鹏. 基于CiteSpace的喀斯特土壤有机碳研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 22 -34 .
[3] 帖军, 隆娟娟, 郑禄, 牛悦, 宋衍霖. 基于SK-EfficientNet的番茄叶片病害识别模型[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 104 -114 .
[4] 翁烨, 邵德盛, 甘淑. 等式约束病态最小二乘的主成分Liu估计解法[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 115 -125 .
[5] 覃城阜, 莫芬梅. C3-和C4-临界连通图的结构[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 145 -153 .
[6] 贺青, 刘剑, 韦联福. 微弱电磁信号的物理极限检测:单光子探测器及其研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 1 -23 .
[7] 田芮谦, 宋树祥, 刘振宇, 岑明灿, 蒋品群, 蔡超波. 逐次逼近型模数转换器研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 24 -35 .
[8] 张师超, 李佳烨. 知识矩阵表示[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 36 -48 .
[9] 梁钰婷, 罗玉玲, 张顺生. 基于压缩感知的混沌图像加密研究综述[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 49 -58 .
[10] 郝雅茹, 董力, 许可, 李先贤. 预训练语言模型的可解释性研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 59 -71 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发