广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (1): 113-121.doi: 10.16088/j.issn.1001-6600.2022022705

• 研究论文 • 上一篇    下一篇

分数阶Newton-Leipnik系统的Mittag-Leffler投影同步

钟晓芸   

  1. 广西师范大学电子工程学院, 广西 桂林 541004
  • 收稿日期:2022-02-27 修回日期:2022-04-20 出版日期:2023-01-25 发布日期:2023-03-07
  • 通讯作者: 钟晓芸(1991—),女,湖南邵阳人,广西师范大学讲师,博士。E-mail:xyzhong@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(12162005); 广西科技计划项目(2020AC19037)

Mittag-Leffler Projective Synchronization of Fractional Order Newton-Leipnik Systems

ZHONG Xiaoyun   

  1. College of Electronic Engineering, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2022-02-27 Revised:2022-04-20 Online:2023-01-25 Published:2023-03-07

摘要: 研究分数阶Newton-Leipnik系统的Mittag-Leffler投影同步。采用输入控制,通过构建适当的Lyapunov函数,利用非线性状态反馈和自适应控制方法,在参数已知和未知时,分别设计了非线性控制器,在6 s内有效实现Newton-Leipnik混沌系统Mittag-Leffler投影同步,并利用Matlab仿真验证了理论结果的有效性。

关键词: 分数阶Newton-Leipnik系统, Mittag-Leffler投影同步, Laplace变换, 非线性控制

Abstract: The Mittag-Leffler projective synchronization of the fractional order Newton-Leipnik chaotic system is investigated in this paper. By utilizing input control, and based on proper Lyapunov function, the Mittag-Leffler projective synchronization of fractional order Newton-Leipnik systems for system parameters known or unknown is realized in 6 s under nonlinear feedback and self-adaptive schemes. Suitable numerical examples are presented to demonstrate the effectiveness of the proposed control method.

Key words: fractional order Newton-Leipnik system, Mittag-Leffler projective synchronization, Laplace transformation, nonlinear control

中图分类号: 

  • O231.2
[1] PECORA L M, CARROLL T L. Synchronization in chaotic systems[J]. Physical Review Letters, 1990, 64 (8): 821-824.
[2]胡锦铭, 韦笃取.不同阶次的分数阶永磁同步电机的混合投影同步[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 1-8.
[3]胡锦铭, 韦笃取. 分数阶永磁同步电机的广义同步研究[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 14-20.
[4]石建平, 杨兰天, 刘丹.基于量子粒子群算法的混沌系统同步控制及参数辨识[J].计算物理, 2019, 36(2): 236-244.
[5]傅杰, 邹艳丽, 谢蓉.簇网络的同步及稳定性研究[J]. 广西师范大学学报(自然科学版), 2017, 35(1): 7-15.
[6]陈思谕, 邹艳丽, 周建, 等.电网发电机功率分配及电网负载不均衡发展研究[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 52-59.
[7]吴雷, 阳丽, 李啟尚, 等. 基于小增益定理的同步磁阻电机混沌控制[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 44-51.
[8]徐健, 孙泽维. 基于分数阶混沌系统同步与稳定性分析[J]. 自动化技术与应用, 2019, 38(1): 10-13, 22.
[9]耿彦峰, 王立志. 基于滑模控制分数阶统一混沌系统的函数投影同步[J]. 天津师范大学学报(自然科学版), 2019, 39(3): 23-26, 42.
[10]颜闽秀, 徐辉. 新分数阶混沌系统的电路设计和同步控制[J].兰州理工大学学报, 2021, 47(1): 105-112.
[11]赵一民, 黄植功.基于模糊变步长神经网络的永磁同步电机控制系统[J]. 广西师范大学学报(自然科学版), 2015, 33(4): 20-24.
[12]李健康, 韦笃取, 罗晓曙, 等.分布式发电系统与感性负载网络混沌同步控制[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 33-41.
[13]LEIPNIK R B, NEWTON T A. Double strange attractors in rigid body motion with linear feedback control [J]. Physics Letters A, 1981, 86(2): 63-67.
[14]CHEN S H, ZHANG Q J, XIE J, et al. A stable-manifold-based method for chaos control and synchronization[J]. Chaos, Solitons & Fractals, 2004, 20(5): 947-954.
[15]RICHTER H. Controlling chaotic system with multiple strange attractors[J]. Physics Letters A, 2002, 300(2/3): 182-188.
[16]WANG X D, TIAN L X. Bifurcation analysis and linear control of the Newton-Leipnik system [J]. Chaos, Solitons & Fractals, 2006, 27(1): 31-38.
[17]SHEU L J, CHEN H K, CHEN J H, et al. Chaos in the Newton-Leipnik system with fractional order[J]. Chaos, Solitons & Fractals, 2008, 36(1): 98-103
[18]JIA Q. Chaos control and synchronization of the Newton-Leipnik chaotic system[J]. Chaos, Solitons & Fractals, 2008, 35(4): 814-824.
[19]宋银芳. Newton-Leipnik 系统的同步控制[J]. 应用数学, 2006, 19(S1): 102-104.
[20]王明军, 王兴元. 分数阶 Newton-Leipnik 的动力学分析[J]. 物理学报, 2010, 59(3): 1583-1592.
[21]LATIFF F N A, MIOR OTHMAN W A, KUMARESAN N. Controlling the initial condition of coupled synchronization of chaotic fractional Newton-Leipnik system for its stability with minimal order[J]. Journal of Interdisciplinary Mathematics, 2021, 24(4): 931-945.
[22]ALIKHANOV A A. Boundary value problems for the diffusion equation of the variable order in differential and difference settings[J]. Applied Mathematics and Computation, 2012, 219(8): 3938-3946.
[23]DIETHELM K, FORD N J, FREED A D. A predictor-corrector approach for the numerical solution of fractional differential equations[J]. Nonlinear Dynamics., 2002, 29(1): 3-22.
[1] 胡华. 与鞅相关的广义Ornstein-Uhlenbeck过程及其在金融中的应用[J]. 广西师范大学学报(自然科学版), 2016, 34(1): 84-92.
[2] 唐胜达, 秦永松. 带干扰的MAP风险过程的期望贴现惩罚函数[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 23-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 包金萍, 宇克莉, 李咏兰, 郑连斌. 临高人的瘦体质量指数与脂肪质量指数[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 142 -147 .
[2] 杜雪松,林勇,梁国琨,黄姻,宾石玉,陈忠,覃俊奇,赵怡. 两种罗非鱼的耐寒性能比较[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 174 -179 .
[3] 陈丹妮, 陈志林, 周善义. 中国蚁科昆虫名录——切叶蚁亚科(补遗)[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 87 -97 .
[4] 侯欠欠, 方志刚, 秦渝, 朱依文. 团簇Fe4P的成键及极化率探究[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 140 -146 .
[5] 白尚旺, 马晓倩, 高改梅, 刘春霞, 党伟超. 基于可验证随机函数和BLS签名的拜占庭容错共识算法[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 194 -201 .
[6] 刘振宇, 宋树祥, 岑明灿, 蒋品群, 蔡超波. 低功耗高精度Sigma-Delta调制器的建模与设计[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 58 -70 .
[7] 张师超, 李佳烨. 知识矩阵表示[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 36 -48 .
[8] 陆杭林, 邵来鹏, 张帆, 唐剑, 黎远鹏, 王咏梅, 胡君辉. 光纤MZI传感器传感机理与传感应用研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 1 -17 .
[9] 张梦芸, 葛静, 林支桂. 三类区域上的Logistic扩散问题及其分析[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 17 -23 .
[10] 陈瑶, 李梅珊, 覃锋, 王恒山. 近5年两面针的化学成分及药理活性研究进展[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 24 -37 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发