广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (3): 232-241.doi: 10.16088/j.issn.1001-6600.2021122803

• 研究论文 • 上一篇    下一篇

高温氧气流改性海泡石处理印染废水性能及再生研究

陈孟林, 陈煜航, 冯金宇, 高澍, 黄智, 宿程远, 林香凤*   

  1. 广西师范大学 环境与资源学院, 广西 桂林 541006
  • 收稿日期:2022-01-16 修回日期:2022-06-07 出版日期:2023-05-25 发布日期:2023-06-01
  • 通讯作者: 林香凤(1979—), 女(壮族), 广西南宁人, 广西师范大学讲师, 博士。E-mail: 310976435@qq.com
  • 基金资助:
    国家自然科学基金(21166005); 广西自然科学基金(2017GXNSFBA198216); 广西创新驱动发展专项(桂科AA20161002-1)

Adsorption Performance of Hot Oxygen Stream Modified Sepiolite and Its Regeneration Using Auramine O as Model

CHEN Menglin, CHEN Yuhang, FENG Jinyu, GAO Shu, HUANG Zhi, SU Chengyuan, LIN Xiangfeng*   

  1. College of Environment and Resources, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2022-01-16 Revised:2022-06-07 Online:2023-05-25 Published:2023-06-01

摘要: 本文采用高温氧气流改性和再生天然海泡石,研究了改性海泡石(H/海泡石)吸附去除模拟印染废水中碱性嫩黄O染料及其再生的性能,以及H/海泡石静态吸附碱性嫩黄O的特点,采用相关模型拟合,考察了高径比(填料高度与吸附柱内径的比值)、染料溶液流速和浓度对H/海泡石动态吸附的影响。结果表明,改性温度和时间分别为550 ℃和1 h,氧气流速为6 L/min得到的改性海泡石的单位吸附量超过200 mg/g;Langmuir等温吸附方程、准一级动力学方程分别符合H/海泡石的吸附行为、吸附动力学;高径比为2.5,染料流速为每小时6倍床体积,染料初始浓度为200 mg/L时,H/海泡石分别能处理的废水量约为55、42和45倍床体积;采用高温氧气流对吸附饱和的H/海泡石进行再生,再生温度和时间分别为550 ℃和20 min,再生氧气流速为6 L/min时,再生率接近100%。

关键词: 改性海泡石, 碱性嫩黄O, 高温氧气流, 再生, 吸附

Abstract: In this study, a new hot oxygen stream modification and regeneration method was used to modify sepiolite (H/sepiolite) and remove the organic dye auramine O. It was found that the unit adsorption capacity of modified sepiolite exceeded 200 mg/g at the modification temperature and time of 550 ℃ and 1 h and an oxygen flow of 6 L/min. The characteristics of static adsorption of auramine O over H/sepiolite were studied and fitted by relative models, and the results showed that the Langmuir isotherm and pseudo-first-order kinetic could describe the adsorption behavior and kinetics of H/sepiolite. The effects height-diameter ratio (the ratio of packing height to inner diameter of adsorption column), flow rate and concentration of dye solution on dynamic adsorption were studied, the results displayed that about 55 BV(bed volume), 42 BV and 45 BV of wastewater ware treated on the condition of height-diameter ratio = 2.5, the dye flow rate = 6 BV/h and the dye initial concentration = 200 mg/L, respectively. The hot oxygen stream was used to regenerate the saturated H/sepiolite, the regeneration rate could reach nearly 100% at the gas flow rate of 6 L/min, regeneration temperature of 550℃, and regeneration time of 20 min.

Key words: modified sepiolite, auramine O, hot oxygen stream, regeneration, adsorption

中图分类号:  X791

[1] ZHOU S Y, JIN L J, GU P Y, et al. Novel calixarene-based porous organic polymers with superfast removal rate and ultrahigh adsorption capacity for selective separation of cationic dyes[J]. Chemical Engineering Journal, 2022, 433: 134422. DOI: 10.1016/j.cej.2021.134422.
[2] PATHANIA D, BHAT V S, MANNEKOTE SHIVANNA J, et al. Garlic peel based mesoporous carbon nanospheres for an effective removal of malachite green dye from aqueous solutions: detailed isotherms and kinetics[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 276: 121197. DOI: 10.1016/j.saa.2022.121197.
[3] SULTANA M, ROWNOK M H, SABRIN M et al. A review on experimental chemically modified activated carbon to enhance dye and heavy metals adsorption[J]. Cleaner Engineering and Technology, 2022, 6: 100382. DOI: 10.1016/j.clet.2021.100382.
[4] AHMAD T, MANSHA M, KAZI I W, et al. Synthesis of 3,5-diaminobenzoic acid containing crosslinked porous polyamine resin as a new adsorbent for efficient removal of cationic and anionic dyes from aqueous solutions[J]. Journal of Water Process Engineering, 2021, 43: 102304. DOI: 10.1016/j.jwpe.2021.102304.
[5] SANTOS S C R, BOAVENTURA R A R. Adsorption of cationic and anionic azo dyes on sepiolite clay: equilibrium and kinetic studies in batch mode[J]. Journal of Environmental Chemical Engineering, 2016, 4(2): 1473-1483. DOI: 10.1016/j.jece.2016.02.009.
[6] LARGO F, HAOUNATI R, AKHOUAIRI S, et al. Adsorptive removal of both cationic and anionic dyes by using sepiolite clay mineral as adsorbent: experimental and molecular dynamic simulation studies[J]. Journal of Molecular Liquids, 2020, 318: 114247. DOI: 10.1016/j.molliq.2020.114247.
[7] YU H, ZHU Y F, XU J, et al. Fabrication porous adsorbents templated from modified sepiolite-stabilized aqueous foams for high-efficient removal of cationic dyes[J]. Chemosphere, 2020, 259: 126949. DOI: 10.1016/j.chemosphere.2020.
[8] ZHOU F, YE G Y, GAO Y T, et al.Cadmium adsorption by thermal-activated sepiolite: application to in-situ remediation of artificially contaminated soil[J]. Journal of Hazardous Materials, 2022, 423: 127104. DOI: 10.1016/j.jhazmat.2021.127104.
[9] LEE J I, HONG S H, LEE C G, et al. Experimental and model study for fluoride removal by thermally activated sepiolite[J]. Chemosphere, 2020, 241: 125094. DOI: 10.1016/j.chemosphere.2019.125094.
[10] 陈孟林,林香凤,黄智,等. 吸附剂的氧化法再生及其在废水处理中的应用[J]. 广西师范大学学报(自然科学版),2006, 24(2):68-71. DOI: 10.3969/j.issn.1001-6600.2006.02.017.
[11] SALVADOR F, MARTIN-SANCHEZ N, SANCHEZ-HERNANDEZ R, et al. Regeneration of carbonaceous adsorbents. Part II: chemical, microbiological and vacuum regeneration[J]. Microporous and Mesoporous Materials, 2015, 202: 277-296. DOI: 10.1016/j.micromeso.2014.08.019.
[12] 高志鹏,刘成,陶辉,等. 生物活性炭的热再生效能及在水厂中的应用[J]. 中国给水排水,2019, 35 (15):48-53. DOI: 10.19853/j.zgjsps.1000-4602.2019.15.010.
[13] EL GAMAL M, MOUSA H A, EL-NAAS M H, et al. Bio-regeneration of activated carbon: a comprehensive review[J]. Separation and Purification Technology, 2018, 197: 345-359. DOI: 10.1016/j.seppur.2018.01.015.
[14] WEDEKING C A, SNOEYINK V L, LARSON R A,et al. Wet air regeneration of PAC: comparison of carbons with different surface oxygen characteristics[J]. Water Research, 1987, 21(8): 929-937. DOI: 10.1016/S0043-1354(87)80010-6.
[15] 吴慧玲,卫皇曌,孙文静,等. 湿式氧化法再生饱和片状活性炭及机理研究[J]. 环境化学,2019,38(3):572-580. DOI: 10.7524/j.issn.0254-6108.2018042805.
[16] SHANG Q, FENG H X, FENG Z Y. Facile fabrication of sepiolite functionalized composites with tunable dielectric properties and their superior microwave absorption performance[J]. Journal of Colloid and Interface Science, 2020, 576: 444-456. DOI: 10.1016/j.jcis.2020.05.052.
[17] YALÇIN H, BOZKAYA Ö. Ultramafic-rock-hosted vein sepiolite occurrences in the Ankara Ophiolitic Melange, central Anatolia, Turkey[J]. Clays and Clay Minerals, 2004, 52(2), 227-239. DOI: 10.1346/CCMN.2004.0520209.
[18] MA Y, WU X Y, ZHANG G K. Core-shell Ag@Pt nanoparticles supported on sepiolite nanofibers for the catalytic reduction of nitrophenols in water: enhanced catalytic performance and DFT study[J]. Applied Catalysis B: Environmental, 2017,205:262-270. DOI: 10.1016/j.apcatb.2016.12.025.
[19] VARELA C F, PAZOS M C, ALBA M D, et al. Organophilization of acid and thermal treated sepiolite for its application in BTEX adsorption from aqueous solutions[J]. Journal of Water Process Engineering, 2021, 40: 101949. DOI: 10.1016/j.jwpe.2021.101949.
[20] ALKAN M, DOĞAN M, TURHAN Y, et al. Adsorption kinetics and mechanism of maxilon blue 5G dye on sepiolite from aqueous solutions[J]. Chemical Engineering Journal, 2008, 139(2): 213-223. DOI: 10.1016/j.cej.2007.07.080.
[21] WU J Y, WANG Y H, WU Z X, et al. Adsorption properties and mechanism of sepiolite modifified by anionic and cationic surfactants on oxytetracycline from aqueous solutions[J]. Science of the Total Environment, 2020, 708: 134409. DOI: 10.1016/j.scitotenv.2019.134409.
[22] SAEED T, NAEEM A, DIN I U, et al. Synthesis of chitosan composite of metal-organic framework for the adsorption of dyes; kinetic and thermodynamic approach[J]. Journal of Hazardous Materials, 2022, 427: 127902. DOI: 10.1016/j.jhazmat.2021.127902.
[23] 叶振华. 化工吸附分离过程[M]. 北京:中国石化出版社,1992.
[24] DOĞAN M, ALKAN M, DEMIRBAŞ Ö, et al. Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions[J]. Chemical Engineering Journal, 2006, 124(1/3): 89-101. DOI: 10.1016/j.cej.2006.08.016.
[25] ZHANG Y D, WANG L J, WANG F, et al. Phase transformation and morphology evolution of sepiolite fibers during thermal treatment[J]. Applied Clay Science,2017,143: 205-211. DOI: 10.1016/j.clay.2017.03.042.
[26] MAQUEDA C, DOS SANTOS AFONSO M, MORILLO E, et al. Adsorption of diuron on mechanically and thermally treated montmorillonite and sepiolite[J]. Applied Clay Science, 2013, 72: 175-183. DOI: 10.1016/j.clay.2012.10.017.
[27] YU J, HE W T, LIU B. Adsorption of acid orange Ⅱ with two step modified sepiolite: optimization, adsorption performance, kinetics, thermodynamics and regeneration[J]. International Journal of Environmental Research and Public Health, 2020, 17(5): 1732. DOI: 10.3390/ijerph17051732.
[28] BAIG U, UDDIN M K, GONDAL M A. Removal of hazardous azo dye from water using synthetic nano adsorbent: facile synthesis, characterization, adsorption, regeneration and design of experiments[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 584: 124031. DOI: 10.1016/j.colsurfa.2019.124031.
[29] FAGBOHUN E O, WANG Q Y, SPESSATO L, et al. Physicochemical regeneration of industrial spent activated carbons using a green activating agent and their adsorption for methyl orange[J]. Surfaces and Interfaces, 2022, 29: 101696. DOI: 10.1016/j.surfin.2021.101696.
[30] SHENDE R V, MAHAJANI V V. Wet oxidative regeneration of activated carbon loaded with reactive dye[J]. Waste Management, 2002, 22(1): 73-83. DOI: 10.1016/S0956-053X(01)00022-8.
[31] ZHOU G L, TIAN H Y, SUN H Q, et al. Synthesis of carbon xerogels at varying sol-gel pHs, dye adsorption and chemical regeneration[J]. Chemical Engineering Journal, 2011, 171(3): 1399-1405. DOI: 10.1016/j.cej.2011.05.054.
[1] 徐湘薇, 张继福, 张云, 胡云峰. 深海芽孢杆菌Bacillus sp. LM-24对结晶紫的吸附研究[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 221-231.
[2] 杨生龙, 母庆闯, 张志华, 刘葵. 废旧锂离子电池回收利用技术进展[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 19-26.
[3] 邓华, 张俊渝, 黄瑞, 王威, 胡乐宁. 竹炭负载氧化锌对Cr(Ⅵ)的吸附性能和机理[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 131-142.
[4] 邓华, 李秋燕, 周瑞爽, 庞舒月, 刘金玉, 康彩艳. 短毛蓼粉末对Cd(Ⅱ)和Cu(Ⅱ)的吸附研究[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 102-112.
[5] 王娜娜, 张翔. PAN基弱碱性离子交换纤维对Zn2+吸附性能研究[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 86-94.
[6] 李淑一, 韦煜明, 彭华勤. 含Ornstein-Uhlenbeck过程的随机SIS传染病模型[J]. 广西师范大学学报(自然科学版), 2020, 38(4): 74-81.
[7] 林海蛟, 张继福, 张云, 胡云峰. 基于大孔吸附树脂先交联后吸附法固定化脂肪酶[J]. 广西师范大学学报(自然科学版), 2020, 38(4): 100-108.
[8] 李海燕, 韦煜明, 彭华勤. 具有双疾病的随机SIRS传染病模型的灭绝性与持久性分析[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 144-155.
[9] 吴娟,邹华,梅平. 羧酸盐型Gemini表面活性剂的表面性能研究[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 78-86.
[10] 秦芳, 蒋钦凤, 王婷, 王玉荣, 冯吉庆, 陈金毅. Mg/Al水滑石和Zn/Al水滑石对微囊藻的去除性能研究[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 115-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张军舰,赖廷煜,杨晓伟. VaR和ES的贝叶斯经验似然估计[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 38 -45 .
[2] 陈泽柠, 罗雪梅, 廖娴, 陈郭燕, 武正军. 氯化钙对福寿螺卵块的杀灭作用[J]. 广西师范大学学报(自然科学版), 2016, 34(1): 156 -161 .
[3] 梁士楚, 田华丽, 田丰, 夏艺, 覃盈盈. 漓江湿地植被类型及其分布特点[J]. 广西师范大学学报(自然科学版), 2015, 33(4): 115 -119 .
[4] 姜影星, 黄文念. 非线性薛定谔-麦克斯韦方程的基态解[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 59 -66 .
[5] 卢其西, 林勇, 宾石玉, 唐章生, 彭婷. 罗非鱼6个家系的低温耐寒测定分析[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 104 -109 .
[6] 杜雪松,林勇,梁国琨,黄姻,宾石玉,陈忠,覃俊奇,赵怡. 两种罗非鱼的耐寒性能比较[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 174 -179 .
[7] 郜红娟, 韩会庆, 罗绪强, 李金艳, 陈梦玲, 张新鼎. 贵州土地利用变化对淡水生态系统服务的影响[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 157 -163 .
[8] 罗奕杏, 唐启明, 薛跃规. 广西穿洞天坑苔藓植物多样性特征研究[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 104 -111 .
[9] 宾石玉, 廖芳, 杜雪松, 许艺兰, 王鑫, 武霞, 林勇. 罗非鱼耐寒性能研究进展[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 10 -16 .
[10] 刘静, 边迅. 直翅目昆虫线粒体基因组的特征及应用[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 17 -28 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发