|
广西师范大学学报(自然科学版) ›› 2021, Vol. 39 ›› Issue (6): 13-23.doi: 10.16088/j.issn.1001-6600.2021022801
庞冰冰1,2,3, 叶丰彩1,2,3, 李钰艳1,2,3, 尚常花1,2,3*
PANG Bingbing1,2,3, YE Fengcai1,2,3, LI Yuyan1,2,3, SHANG Changhua1,2,3*
摘要: 能源消耗与环境污染使得微藻生物柴油生产成为研究焦点。通过同时提取类胡萝卜素和油脂,对微藻进行综合利用,可以有效降低微藻生物柴油生产成本。类胡萝卜素是一类重要的活性物质,但是, 目前对于微藻类胡萝卜素的合成和代谢调控还缺乏了解。为了更好地理解和操纵微藻类胡萝卜素代谢以增强类胡萝卜素积累,本文综述了微藻类胡萝卜素合成与代谢调控的研究进展,包括类胡萝卜素生物合成途径,提高类胡萝卜素积累的生化调控方式、诱变方式和基因工程方式,阐述环境因素对类胡萝卜素积累的影响,总结了增强类胡萝卜素合成途径关键酶基因的表达、增强调控类胡萝卜素合成途径的转录因子基因的表达等基因工程策略,同时也对微藻类胡萝卜素代谢研究的发展进行了展望。
中图分类号:
[1] 殷林, 林俊芳, 叶志伟, 等. 外界因子调控类胡萝卜素生物合成研究进展[J]. 食品与机械, 2016, 32(5): 214-219. DOI:10.13652/j.issn.1003-5788.2016.05.049. [2] WICHUK K, BRYNJÓLFSSON S, FU W Q. Biotechnological production of value-added carotenoids from microalgae: Emerging technology and prospects[J]. Bioengineered, 2014, 5(3): 204-208.DOI:10.4161/bioe.28720. [3] DEMBITSKY V M, MAOKA T.Allenic and cumulenic lipids[J]. Progress in Lipid Research, 2007, 46(6): 328-375. DOI:10.1016/j.plipres.2007.07.001. [4] MIZIORKO H M. Enzymes of the mevalonate pathway of isoprenoid biosynthesis[J]. Archives of Biochemistry and Biophysics, 2011, 505(2): 131-143. DOI:10.1016/j.abb.2010.09.028. [5] ZINGLÉ C, KUNTZ L, TRITSCH D, et al. Isoprenoid biosynthesis via the methylerythritol phosphate pathway: structural variations around phosphonate anchor and spacer of fosmidomycin, a potent inhibitor of deoxyxylulose phosphate reductoisomerase[J]. The Journal of Organic Chemistry, 2010, 75(10): 3203-3207. DOI:10.1021/jo9024732. [6] VRANOVÁ E, COMAN D, GRUISSEM W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis[J]. Annual Review of Plant Biology, 2013, 64: 665-700. DOI:10.1146/annurev-arplant-050312-120116. [7] LEÓN R, COUSO I, FERNÁ NDEZ E. Metabolic engineering of ketocarotenoids biosynthesis in theunicelullar microalga Chlamydomonas reinhardtii[J]. Journal of Biotechnology, 2007, 130(2): 143-152. DOI:10.1016/j.jbiotec.2007.03.005. [8] XU Y N, HARVEY P J. Carotenoid production by Dunaliella salina under red light[J]. Antioxidants, 2019, 8(5): 123. DOI:10.3390/antiox8050123. [9] GIANNELLI L, YAMADA H, KATSUDA T,et al. Effects of temperature on the astaxanthin productivity and light harvesting characteristics of the green alga Haematococcus pluvialis[J]. Journal of Bioscience and Bioengineering, 2015, 119(3): 345-350. DOI:10.1016/j.jbiosc.2014.09.002. [10] 王鑫威, 王丽丽, 龚一富, 等. 茉莉酸甲酯对雨生红球藻虾青素含量和dxs基因表达的影响[J]. 水产学报, 2011, 35(12): 1822-1828. [11] PIRASTRU L, DARWISH M, CHU F L,et al. Carotenoid production and change of photosynthetic functions in Scenedesmus sp. exposed to nitrogen limitation and acetate treatment[J]. Journal of Applied Phycology, 2012, 24(1): 117-124. DOI:10.1007/s10811-011-9657-4. [12] SAHA S K, MOANE S, MURRAY P. Effect of macro-and micro-nutrient limitation on superoxidedismutase activities and carotenoid levels in microalga Dunaliella salina CCAP 19/18[J]. Bioresource Technology, 2013, 147: 23-28. DOI:10.1016/j.biortech.2013.08.022. [13] FARHAT N, RABHI M, FALLEH H,et al. Optimization of salt concentrations for a higher carotenoid production in Dunaliella salina (Chlorophyceae)[J]. Journal of Phycology, 2011, 47(5): 1072-1077. DOI:10.1111/j.1529-8817.2011.01036.x. [14] LIU W H, MING Y, LI P,et al. Inhibitory effects of hypo-osmotic stress on extracellular carbonic anhydrase and photosynthetic efficiency of green alga Dunaliella salina possibly through reactive oxygen species formation[J]. Plant Physiology and Biochemistry, 2012, 54: 43-48. DOI:10.1016/j.plaphy.2012.01.018. [15] FU W Q, PAGLIA G, MAGNÚSDÓTTIR M,et al. Effects of abiotic stressors on lutein production in the green microalga Dunaliella salina[J]. Microbial Cell Factories, 2014, 13: 3. DOI:10.1186/1475-2859-13-3. [16] FU W Q, CHAIBOONCHOE A, KHRAIWESH B,et al. Algal cell factories: Approaches, applications, and potentials[J]. Marine Drugs, 2016, 14(12): 225. DOI:10.3390/md14120225. [17] DEPAUW F A, ROGATO A,RIBERA D’ALCALÀ M, et al. Exploring the molecular basis of responses to light in marine diatoms[J]. Journal of Experimental Botany, 2012, 63(4): 1575-1591. DOI:10.1093/jxb/ers005. [18] 陈建楠, 陈由强, 薛婷. 利用UV和ARTP诱变筛选优良性状的球等鞭金藻[J]. 福建农业科技, 2020(2): 9-16. DOI:10.13651/j.cnki.fjnykj.2020.02.002. [19] YI Z Q, SU Y X, XU M N,et al. Chemical mutagenesis and fluorescence-based high-throughput screening for enhanced accumulation of carotenoids in a model marine diatom Phaeodactylum tricornutum[J]. Marine Drugs, 2018, 16(8): 272. DOI:10.3390/md16080272. [20] 武昌俊, 唐欣昀. 光照对杜氏盐藻突变藻株Zea1生长和积累玉米黄素的影响[J]. 食品科学, 2012, 33(3): 199-202. [21] O’NEILL E C, SAALBACH G, FIELD R A. Gene discovery for synthetic biology: exploring the novel natural product biosynthetic capacity of eukaryotic microalgae[J]. Methods in Enzymology, 2016, 576: 99-120. DOI:10.1016/bs.mie.2016.03.005. [22] BANERJEE C, DUBEY K K, SHUKLA P. Metabolic engineering of microalgal based biofuel production: Prospects and challenges[J]. Frontiers in Microbiology, 2016, 7: 432. DOI:10.3389/fmicb.2016.00432. [23] JAGADEVAN S, BANERJEE A, BANERJEE C,et al. Recent developments in synthetic biology and metabolic engineering in microalgae towards biofuel production[J]. Biotechnology for Biofuels, 2018, 11(1): 185. DOI:10.1186/s13068-018-1181-1. [24] VICKERS C E, BONGERS M, LIU Q,et al. Metabolic engineering of volatile isoprenoids in plants and microbes[J]. Plant, Cell & Environment, 2014, 37(8): 1753-1775. DOI:10.1111/pce.12316. [25] MULDERS K J M, LAMERS P P, MARTENS D E, et al. Phototrophic pigment production with microalgae: biological constraints and opportunities[J]. Journal of Phycology, 2014, 50(2): 229-242. DOI:10.1111/jpy.12173. [26] KAPOOR D, SHARMA R, HANDA N,et al. Redox homeostasis in plants under abiotic stress: Role of electron carriers, energy metabolism mediators and proteinaceous thiols[J]. Frontiers in Environmental Science, 2015, 3: 13. DOI:10.3389/fenvs.2015.00013. [27] SUN T H, TADMOR Y, LI L. Pathways for carotenoid biosynthesis, degradation, and storage[M]//RODRÍGUEZ-CONCEPCIOŃ M WELSCHR. Methods in Molecular Biology: Plant and Food Carotenoids. New York: Humana, 2020: 3-23. DOI:10.1007/978-1-4939-9952-1_1. [28] CHEN Q W, LI J X, LIU Z X, et al. Molecular basis for sesterterpene diversity produced by plant terpene synthases[J]. Plant Communications, 2020, 1(5): 100051. DOI:10.1016/j.xplc.2020.100051. [29] KATHIRESAN S, CHANDRASHEKAR A, RAVISHANKAR G A,et al. Regulation of astaxanthin and its intermediates through cloning and genetic transformation of β-carotene ketolase in Haematococcus pluvialis[J]. Journal of Biotechnology, 2015, 196-197: 33-41. DOI:10.1016/j.jbiotec.2015.01.006. [30] WANG S S, ZHANG L, CHI S, et al. Phylogenetic analyses of the genes involved in carotenoid biosynthesis in algae[J]. Acta Oceanologica Sinica, 2018, 37(4): 89-101. DOI:10.1007/s13131-018-1178-4. [31] CHAVARRIAGA-AGUIRRE P, PRÍAS M, LÓPEZ D, et al. Molecular analysis of the expression of a crtB transgene and the endogenous psy2-y 1 and psy2-y 2 genes of cassava and their effect on root carotenoid content[J]. Transgenic Research, 2017, 26(5): 639-651. DOI:10.1007/s11248-017-0037-y. [32] XI Y M, KONG F T, CHI Z Y. ROS Induce β-carotene biosynthesis caused by changes of photosynthesis efficiency and energy metabolism in Dunaliella salina under stress conditions[J]. Frontiers in Bioengineering and Biotechnology, 2021, 8: 613768. DOI:10.3389/fbioe.2020.613768. [33] COUSO I, VILA M, VIGARA J,et al. Synthesis of carotenoids and regulation of the carotenoid biosynthesis pathway in response to high light stress in the unicellular microalga Chlamydomonas reinhardtii[J]. European Journal of Phycology, 2012, 47(3): 223-232. DOI:10.1080/09670262.2012.692816. [34] MAO X M, WU T, SUN D Z,et al. Differential responses of the green microalga Chlorella zofingiensis to the starvation of various nutrients for oil and astaxanthin production[J]. Bioresource Technology, 2018, 249: 791-798. DOI:10.1016/j.biortech.2017.10.090. [35] ORTIZ-TORRES M I, FERNÁNDEZ-NIÑO M, CRUZ J C,et al. Rational design of photo-electrochemical hybrid devices based on graphene and Chlamydomonas reinhardtii light-harvesting proteins[J]. Scientific Reports, 2020, 10(1): 3376. DOI:10.1038/s41598-020-60408-5. [36] SHANG C H, XU X L, YUAN Z H,et al. Cloning and differential expression analysis of geranylgeranyl diphosphate synthase gene from Dunaliella parva[J]. Journal of Applied Phycology, 2016, 28(4): 2397-2405. DOI:10.1007/s10811-015-0767-2. [37] SHANG C H, WANG W, ZHU S N,et al. The responses of two genes encoding phytoene synthase (Psy) and phytoene desaturase (Pds) to nitrogen limitation and salin-ity up-shock with special emphasis on carotenogenesis in Dunaliella parva[J]. Algal Research-Biomass Biofuels and Bioproducts, 2018, 32: 1-10. DOI:10.1016/j.algal.2018.03.002. [38] LV H X, CUI X G, WAHID F,et al. Analysis of the physiological and molecular responses of Dunaliella salina to macronutrient deprivation[J]. PLoS One, 2016, 11(3): e0152226. DOI:10.1371/journal.pone.0152226. [39] SUN T H, LIU C Q, HUI YY, et al. Coordinated regulation of gene expression for carotenoid metabolism in Chlamydomonas reinhardtii[J]. Journal of Integrative Plant Biology, 2010, 52(10): 868-878. DOI:10.1111/j.1744-7909.2010.00993.x. [40] LI Z R, PEERS G, DENT R M,et al. Evolution of an atypical de-epoxidase for photoprotection in the green lineage[J]. Nature Plants, 2016, 2: 16140. DOI:10.1038/nplants.2016.140. [41] SHI T Q, WANG L R, ZHANG Z X,et al. Stresses as first-line tools for enhancing lipid and carotenoid production in microalgae[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 610. DOI:10.3389/fbioe.2020.00610. [42] BAI F, GUSBETH C, FREY W,et al. Nanosecond pulsed electric fields modulate the expression of the astaxanthin biosynthesis genes psy, crtR-b and bkt 1 in Haematococcus pluvialis[J]. Scientific Reports, 2020, 10(1): 15508. DOI:10.1038/s41598-020-72479-5. [43] HUANG W P, YE J R, ZHANG J J,et al. Transcriptome analysis of Chlorella zofingiensis to identify genes and their expressions involved in astaxanthin and tri-acylglycerol biosynthesis[J]. Algal Research-Biomass Biofuels and Bioproducts, 2016, 17: 236-243. DOI:10.1016/j.algal.2016.05.015. [44] KATO Y, HASUNUMA T. Metabolic engineering for carotenoid production using eukaryotic microalgae and prokaryotic cyanobacteria[J]. Advances in Experimental Medicine and Biology, 2021, 1261: 121-135. DOI:10.1007/978-981-15-7360-6_10. [45] KUMAR G, SHEKH A, JAKHU S, et al. Bioengineering of microalgae: recent advances, perspectives, and regulatory challenges for industrial application[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 914. DOI:10.3389/fbioe.2020.00914. [46] GALARZA J I, GIMPEL J A, ROJAS V,et al. Over-accumulation of astaxanthin in Haematococcus pluvialis through chloroplast genetic engineering[J]. Algal Research-Biomass Biofuels and Bioproducts, 2018, 31: 291-297. DOI:10.1016/j.algal.2018.02.024. [47] VARELA J C, PEREIRA H, VILA M,et al. Production of carotenoids by microalgae: achievements and challenges[J]. Photosynthesis Research, 2015, 125(3): 423-436. DOI:10.1007/s11120-015-0149-2. [48] BAEK K, YU J, JEONG J,et al. Photoautotrophic production of macular pigment in a Chlamydomonas reinhardtii strain generated by using DNA-free CRISPR-Cas9 RNP-mediated mutagenesis[J]. Biotechnology and Bioengineering, 2018, 115(3): 719-728. DOI:10.1002/bit.26499. [49] ANILA N, SIMON D P, CHANDRASHEKAR A, et al. Metabolic engineering of Dunaliella salina for production of ketocarotenoids[J]. Photosynthesis Research, 2016, 127(3): 321-333. DOI:10.1007/s11120-015-0188-8. [50] COUSO I, VILA M, RODRIGUEZ H, et al. Overexpression of an exogenous phytoene synthase gene in the unicellular alga Chlamydomonas reinhardtii leads to an increase in the content of carotenoids[J]. Biotechnology Progress, 2011, 27(1): 54-60. DOI:10.1002/btpr.527. [51] CORDERO B F, COUSO I, LEÓN R,et al. Enhancement of carotenoids biosynthesis in Chlamydomonas reinhardtii by nuclear transformation using a phytoene synthase gene isolated from Chlorella zofingiensis[J]. Applied Microbiology and Biotechnology, 2011, 91(2): 341-351. DOI:10.1007/s00253-011-3262-y. [52] LIU J, MAO X M, ZHOU W G, et al. Simultaneous production of triacylglycerol and high-value carotenoids by theastaxanthin-producing oleaginous green microalga Chlorella zofingiensis[J]. Bioresource Technology, 2016, 214: 319-327. DOI:10.1016/j.biortech.2016.04.112. [53] CAO B, ZHAO Y, ZHANG Z,et al. Gene regulatory network construction identified NFYA as a diffuse subtype-specific prognostic factor in gastric cancer[J]. International Journal of Oncology, 2018, 53(5): 1857-1868. DOI:10.3892/ijo.2018.4519. [54] 樊宝莲, 王晓云. 转录因子调控植物类胡萝卜素合成途径的研究进展[J]. 分子植物育种, 2021,19(13): 4401-4408. [55] PAPDI C, PÉREZ-SALAMÓ I, JOSEPH M P, et al. The low oxygen, oxidative and osmotic stress responses synergistically act through the ethylene response factor VII genes RAP2.12, RAP2.2 and RAP2.3[J]. The Plant Journal, 2015, 82(5): 772-784. DOI:10.1111/tpj.12848. [56] LLORENTE B, D’ANDREA L, RUIZ-SOLA M A,et al. Tomato fruit carotenoid biosynthesis is adjusted to actual ripening progression by a light-dependent mechanism[J]. the Plant Journal, 2016, 85(1): 107-119. DOI:10.1111/tpj.13094. [57] RUIZ-SOLA M Á, RODRÍGUEZ-VILLALÓN A, RODRÍGUEZ-CONCEPCIÓN M. Light-sensitive Phytochrome-Interacting Factors (PIFs) are not required to regulate phytoene synthase gene expression in the root[J]. Plant Signaling & Behavior, 2014, 9(8): e29248. DOI:10.4161/psb.29248. [58] , BOCOBZA S, PANDA S, et al. Analysis of wild tomato introgression lines elucidates the genetic basis of transcriptome and metabolome variation underlying fruit traits and pathogen response[J]. Nature Genetics, 2020, 52(10): 1111-1121. DOI:10.1038/s41588-020-0690-6. [59] GARCEAU D C, BATSON M K, PAN I L. Variations on a theme in fruit development: the PLE lineage of MADS-box genes in tomato (TAGL1) and other species[J]. Planta, 2017, 246(2): 313-321. DOI:10.1007/s00425-017-2725-5. [60] MA N N, FENG H L, MENG X,et al. Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softening[J]. BMC Plant Biology, 2014, 14: 351. DOI:10.1186/s12870-014-0351-y. [61] ZHOU H, LIN-WANG K, WANG H L, et al. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors[J]. The Plant Journal, 2015, 82(1): 105-121. DOI:10.1111/tpj.12792. [62] FU CC, HAN Y C, FAN Z Q, et al. The papaya transcription factor CpNAC1 modulates carotenoid biosynthesis through activating phytoene desaturase genes CpPDS2/4 during fruit ripening[J]. Journal of Agricultural and Food Chemistry, 2016, 64(27): 5454-5463. DOI:10.1021/acs.jafc.6b01020. [63] WEBER T, CHARUSANTI P, MUSIOL-KROLL E M,et al. Metabolic engineering of antibiotic factories: New tools for antibiotic production in actinomycetes[J]. Trends in Biotechnology, 2015, 33(1): 15-26. DOI:10.1016/j.tibtech.2014.10.009. |
No related articles found! |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |