Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (2): 56-69.doi: 10.16088/j.issn.1001-6600.2024040102
• Intelligence Information Processing • Previous Articles Next Articles
GUO Xiangyu, SHI Tianyi, CHEN Yannan, NAN Xinyuan*, CAI Xin
| [1] 朱天乐,潘祉鸥,袁天笑,等.高铁牵引供电系统运行的电能质量评估[J].自动化应用,2021(11):104-110.DOI: 10.19769/j.zdhy.2021.11.026. [2] 高天姿.基于深度卷积神经网络的接触网异物与缺陷检测算法研究[D].南昌:华东交通大学,2022.DOI: 10.27147/d.cnki.ghdju.2022.000326. [3] 段旺旺,唐鹏,金炜东,等.基于关键区域HOG特征的铁路接触网鸟巢检测[J].中国铁路,2015(8):73-77.DOI: 10.3969/j.issn.1001-683X.2015.08.018. [4] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C] // 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). Los Alamitos, CA: IEEE Computer Society, 2005: 886-893. DOI: 10.1109/CVPR.2005.177. [5] 祝振敏,谢亮凯.基于相对位置不变性的接触网鸟巢识别检测[J].铁道科学与工程学报,2018,15(4):1043-1049.DOI: 10.3969/j.issn.1672-7029.2018.04.030. [6] 张沐杰.面向高铁接触网的异物检测研究与实现[D].西安:西安电子科技大学,2017.DOI: 10.7666/d.D01386279. [7] 顾䶮楠.铁路接触网异物检测图像处理技术研究[D].兰州:兰州交通大学,2022.DOI: 10.27205/d.cnki.gltec.2022.000485. [8] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08)[2024-05-06]. https://arxiv.org/abs/1804.02767. DOI: 10.48550/arXiv.1804.02767. [9] 吕嘉宜.基于视觉的高速铁路接触网异物检测[D].杭州:浙江大学,2021.DOI: 10.27461/d.cnki.gzjdx.2021.001267. [10] KOLEKAR A, DALAL V. Barcode detection and classification using SSD (Single Shot Multibox Detector) deep learning algorithm[C] // Proceedings of the 3rd International Conference on Advances in Science & Technology (ICAST) 2020. Rochester, NY: Social Science Electronic Publishing, 2020: 1-4. [11] 蒋欣兰,贾文博.高铁接触网异物侵入的机器视觉检测方法[J].计算机工程与应用,2019,55(22):250-257.DOI: 10.3778/j.issn.1002-8331.1908-0268. [12] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C] // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2020: 10778-10787. DOI: 10.1109/CVPR42600.2020.01079. [13] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C] // 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2023: 7464-7475. DOI: 10.1109/CVPR52729.2023.00721. [14] 潘海鹏,王云涛,马淼.基于注意力机制与多尺度融合学习的车辆重识别方法[J].浙江理工大学学报(自然科学版),2021,45(5):657-665.DOI: 10.3969/j.issn.1673-3851(n).2021.05.011. [15] NASCIMENTO M G D, PRISACARIU V, FAWCETT R. DSConv: efficient convolution operator[C] // 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2020: 5147-5156. DOI: 10.1109/ICCV.2019.00525. [16] 郝帅,杨磊,马旭,等.基于注意力机制与跨尺度特征融合的YOLOv5输电线路故障检测[J].中国电机工程学报,2023,43(6):2319-2330.DOI: 10.13334/j.0258-8013.pcsee.212607. [17] 李秋华,李吉成,沈振康.基于多尺度特征融合的红外图像小目标检测[J].系统工程与电子技术,2005,27(9): 1557-1560.DOI: 10.3321/j.issn:1001-506X.2005.09.018. [18] 辛世澳,葛海波,袁昊,等.改进YOLOv7的轻量化水下目标检测算法[J].计算机工程与应用,2024,60(3):88-99.DOI: 10.3778/j.issn.1002-8331.2308-0333. [19] 周中,闫龙宾,张俊杰,等.基于自注意力机制与卷积神经网络的隧道衬砌裂缝智能检测[J].铁道学报,2024,46(9):182-192.DOI: 10.3969/j.issn.1001-8360.2024.09.021. [20] 张林鍹,巴音塔娜,曾庆松.基于StyleGAN2-ADA和改进YOLO v7的葡萄叶片早期病害检测方法[J].农业机械学报,2024,55(1):241-252.DOI: 10.6041/j.issn.1000-1298.2024.01.023. [21] 李安达,吴瑞明,李旭东.改进YOLOv7的小目标检测算法研究[J].计算机工程与应用,2024,60(1):122-134.DOI: 10.3778/j.issn.1002-8331.2307-0004. [22] 代啟亮,熊凌,陈琳国,等.改进YOLOv5的PDC钻头复合片缺损识别[J].电子测量与仪器学报,2023,37(8):164-172.DOI: 10.13382/j.jemi.B2306476. [23] 俞泉泉.面向光学遥感图像目标的检测与识别算法的研究与实现[D].成都:电子科技大学,2021.DOI: 10.27005/d.cnki.gdzku.2021.003795. [24] CHENG G, HAN J W, ZHOU P C, et al. Multi-class geospatial object detection and geographic image classification based on collection of part detectors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 98: 119-132. DOI: 10.1016/j.isprsjprs.2014.10.002. [25] CHENG G, HAN J W. A survey on object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117: 11-28. DOI: 10.1016/j.isprsjprs.2016.03.014. [26] CHENG G, ZHOU P C, HAN J W. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7405-7415. DOI: 10.1109/TGRS.2016.2601622. [27] ELAOUA A, NADOUR M, CHERROUN L, et al. Real-time people counting system using YOLOv8 object detection[C] // 2023 2nd International Conference on Electronics, Energy and Measurement (IC2EM). Los Alamitos, CA: IEEE Computer Society, 2023: 1-5. DOI: 10.1109/IC2EM59347.2023.10419684. |
| [1] | SU Chunhai, XIA Haiying. Facial Expression Recognition Based on Noise-Resistant Dual Constraint Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 70-82. |
| [2] | LIU Yuna, MA Shuangbao. Fabric Defect Detection Based on Improved Lightweight YOLOv8n [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 83-94. |
| [3] | DAI Linhua, LI Yuansong, SHI Rui, HE Zhongliang, LI Lei. HSED-YOLO: A Lightweight Model for Detecting Surface Defects in Strip Steel [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 95-106. |
| [4] | YU Xuesong, XU Bao. Bayes Estimations of Burr Distribution under the Weighted p, q Symmetric Loss Function [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 186-193. |
| [5] | TU Zhirong, LING Haiying, LI Guo, LU Shenglian, QIAN Tingting, CHEN Ming. Lightweight Passion Fruit Detection Method Based on Improved YOLOv7-Tiny [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 79-90. |
| [6] | LÜ Hui, LÜ Weifeng. Fundus Hemorrhagic Spot Detection Algorithm Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 99-107. |
| [7] | ZENG Liang, HU Qian, YANG Tengfei, TAN Weiwei. Substation Personnel Safety Operation Detection Based on L-ConvNeXt Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 102-110. |
| [8] | XI Lingfei, Yilihamu Yaermaimaiti, LIU Yajie. Surface Defect Detection Method for Aluminum Profile Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 111-119. |
| [9] | ZHAO Wei, TIAN Shuai, ZHANG Qiang, WANG Yaoshen, WANG Sibo, SONG Jiang. Fritillaria ussuriensis Maxim Detection Model Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 22-32. |
| [10] | HUANG Yeqi, WANG Mingwei, YAN Rui, LEI Tao. Surface Quality Detection of Diamond Wire Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 123-134. |
| [11] | LI Yang, GOU Gang. Lightweight Garbage Detection Method Based on Improved YOLOX [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 80-90. |
| [12] | WEI Mingjun, ZHOU Taiyu, JI Zhanlin, ZHANG Xinnan. Detection Method of Mask Wearing in Public Places Based on YOLOv3 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 76-86. |
| [13] | LI Yongjie, ZHOU Guihong, LIU Bo. Fusion Algorithm of Face Detection and Head Pose Estimation Based on YOLOv3 Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 95-103. |
| [14] | ZHANG Wenlong, NAN Xinyuan. Road Vehicle Tracking Algorithm Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 49-57. |
| [15] | CHEN Wenkang, LU Shenglian, LIU Binghao, LI Guo, LIU Xiaoyu, CHEN Ming. Real-time Citrus Recognition under Orchard Environment by Improved YOLOv4 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 134-146. |
|