Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (2): 56-69.doi: 10.16088/j.issn.1001-6600.2024040102

• Intelligence Information Processing • Previous Articles     Next Articles

Research on Foreign Object Detection in Railway Overhead Contact System Based on YOLO-CDBW Model

GUO Xiangyu, SHI Tianyi, CHEN Yannan, NAN Xinyuan*, CAI Xin   

  1. School of Electrical Engineering, Xinjiang University, Urumqi Xinjiang 830017, China
  • Received:2024-04-01 Revised:2024-05-08 Online:2025-03-05 Published:2025-04-02

Abstract: The catenary is a transmission line that provides power for the train, and foreign objects such as plastic bags attached to the catenary will cause potential safety hazards to the train operation. In order to solve the problems of low efficiency and high labor cost of manual inspection, a YOLO-CDBW model for catenary foreign body detection based on YOLOv7 is proposed. Firstly, in the feature extraction stage, a feature extraction module using residual bottleneck structure and depth separation convolutional layer is constructed to avoid the problem of small target feature loss caused by the increase of network depth and reduce the amount of network computation. Finally, the WIoU loss function is used to optimize the model and focus on the ordinary mass anchor frame through the dynamic focusing mechanism to improve the prediction accuracy. Experimental results show that, the average mAP0.5 of the YOLO-CDBW model reaches 87.1% and the detection speed FPS reaches 66.5 frame/s, which are 5.0 and 10.8 percentage points higher than those of the YOLOv7 model, respectively, meeting the needs of catenary foreign body detection.

Key words: contact line, foreign substance examination, YOLO, object detection, loss function, attention mechanisms

CLC Number:  U226.8;TP391.41
[1] 朱天乐,潘祉鸥,袁天笑,等.高铁牵引供电系统运行的电能质量评估[J].自动化应用,2021(11):104-110.DOI: 10.19769/j.zdhy.2021.11.026.
[2] 高天姿.基于深度卷积神经网络的接触网异物与缺陷检测算法研究[D].南昌:华东交通大学,2022.DOI: 10.27147/d.cnki.ghdju.2022.000326.
[3] 段旺旺,唐鹏,金炜东,等.基于关键区域HOG特征的铁路接触网鸟巢检测[J].中国铁路,2015(8):73-77.DOI: 10.3969/j.issn.1001-683X.2015.08.018.
[4] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C] // 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). Los Alamitos, CA: IEEE Computer Society, 2005: 886-893. DOI: 10.1109/CVPR.2005.177.
[5] 祝振敏,谢亮凯.基于相对位置不变性的接触网鸟巢识别检测[J].铁道科学与工程学报,2018,15(4):1043-1049.DOI: 10.3969/j.issn.1672-7029.2018.04.030.
[6] 张沐杰.面向高铁接触网的异物检测研究与实现[D].西安:西安电子科技大学,2017.DOI: 10.7666/d.D01386279.
[7] 顾䶮楠.铁路接触网异物检测图像处理技术研究[D].兰州:兰州交通大学,2022.DOI: 10.27205/d.cnki.gltec.2022.000485.
[8] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08)[2024-05-06]. https://arxiv.org/abs/1804.02767. DOI: 10.48550/arXiv.1804.02767.
[9] 吕嘉宜.基于视觉的高速铁路接触网异物检测[D].杭州:浙江大学,2021.DOI: 10.27461/d.cnki.gzjdx.2021.001267.
[10] KOLEKAR A, DALAL V. Barcode detection and classification using SSD (Single Shot Multibox Detector) deep learning algorithm[C] // Proceedings of the 3rd International Conference on Advances in Science & Technology (ICAST) 2020. Rochester, NY: Social Science Electronic Publishing, 2020: 1-4.
[11] 蒋欣兰,贾文博.高铁接触网异物侵入的机器视觉检测方法[J].计算机工程与应用,2019,55(22):250-257.DOI: 10.3778/j.issn.1002-8331.1908-0268.
[12] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C] // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2020: 10778-10787. DOI: 10.1109/CVPR42600.2020.01079.
[13] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C] // 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2023: 7464-7475. DOI: 10.1109/CVPR52729.2023.00721.
[14] 潘海鹏,王云涛,马淼.基于注意力机制与多尺度融合学习的车辆重识别方法[J].浙江理工大学学报(自然科学版),2021,45(5):657-665.DOI: 10.3969/j.issn.1673-3851(n).2021.05.011.
[15] NASCIMENTO M G D, PRISACARIU V, FAWCETT R. DSConv: efficient convolution operator[C] // 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2020: 5147-5156. DOI: 10.1109/ICCV.2019.00525.
[16] 郝帅,杨磊,马旭,等.基于注意力机制与跨尺度特征融合的YOLOv5输电线路故障检测[J].中国电机工程学报,2023,43(6):2319-2330.DOI: 10.13334/j.0258-8013.pcsee.212607.
[17] 李秋华,李吉成,沈振康.基于多尺度特征融合的红外图像小目标检测[J].系统工程与电子技术,2005,27(9): 1557-1560.DOI: 10.3321/j.issn:1001-506X.2005.09.018.
[18] 辛世澳,葛海波,袁昊,等.改进YOLOv7的轻量化水下目标检测算法[J].计算机工程与应用,2024,60(3):88-99.DOI: 10.3778/j.issn.1002-8331.2308-0333.
[19] 周中,闫龙宾,张俊杰,等.基于自注意力机制与卷积神经网络的隧道衬砌裂缝智能检测[J].铁道学报,2024,46(9):182-192.DOI: 10.3969/j.issn.1001-8360.2024.09.021.
[20] 张林鍹,巴音塔娜,曾庆松.基于StyleGAN2-ADA和改进YOLO v7的葡萄叶片早期病害检测方法[J].农业机械学报,2024,55(1):241-252.DOI: 10.6041/j.issn.1000-1298.2024.01.023.
[21] 李安达,吴瑞明,李旭东.改进YOLOv7的小目标检测算法研究[J].计算机工程与应用,2024,60(1):122-134.DOI: 10.3778/j.issn.1002-8331.2307-0004.
[22] 代啟亮,熊凌,陈琳国,等.改进YOLOv5的PDC钻头复合片缺损识别[J].电子测量与仪器学报,2023,37(8):164-172.DOI: 10.13382/j.jemi.B2306476.
[23] 俞泉泉.面向光学遥感图像目标的检测与识别算法的研究与实现[D].成都:电子科技大学,2021.DOI: 10.27005/d.cnki.gdzku.2021.003795.
[24] CHENG G, HAN J W, ZHOU P C, et al. Multi-class geospatial object detection and geographic image classification based on collection of part detectors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 98: 119-132. DOI: 10.1016/j.isprsjprs.2014.10.002.
[25] CHENG G, HAN J W. A survey on object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117: 11-28. DOI: 10.1016/j.isprsjprs.2016.03.014.
[26] CHENG G, ZHOU P C, HAN J W. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7405-7415. DOI: 10.1109/TGRS.2016.2601622.
[27] ELAOUA A, NADOUR M, CHERROUN L, et al. Real-time people counting system using YOLOv8 object detection[C] // 2023 2nd International Conference on Electronics, Energy and Measurement (IC2EM). Los Alamitos, CA: IEEE Computer Society, 2023: 1-5. DOI: 10.1109/IC2EM59347.2023.10419684.
[1] SU Chunhai, XIA Haiying. Facial Expression Recognition Based on Noise-Resistant Dual Constraint Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 70-82.
[2] LIU Yuna, MA Shuangbao. Fabric Defect Detection Based on Improved Lightweight YOLOv8n [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 83-94.
[3] DAI Linhua, LI Yuansong, SHI Rui, HE Zhongliang, LI Lei. HSED-YOLO: A Lightweight Model for Detecting Surface Defects in Strip Steel [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 95-106.
[4] YU Xuesong, XU Bao. Bayes Estimations of Burr Distribution under the Weighted p, q Symmetric Loss Function [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 186-193.
[5] TU Zhirong, LING Haiying, LI Guo, LU Shenglian, QIAN Tingting, CHEN Ming. Lightweight Passion Fruit Detection Method Based on Improved YOLOv7-Tiny [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 79-90.
[6] LÜ Hui, LÜ Weifeng. Fundus Hemorrhagic Spot Detection Algorithm Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 99-107.
[7] ZENG Liang, HU Qian, YANG Tengfei, TAN Weiwei. Substation Personnel Safety Operation Detection Based on L-ConvNeXt Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 102-110.
[8] XI Lingfei, Yilihamu Yaermaimaiti, LIU Yajie. Surface Defect Detection Method for Aluminum Profile Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 111-119.
[9] ZHAO Wei, TIAN Shuai, ZHANG Qiang, WANG Yaoshen, WANG Sibo, SONG Jiang. Fritillaria ussuriensis Maxim Detection Model Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 22-32.
[10] HUANG Yeqi, WANG Mingwei, YAN Rui, LEI Tao. Surface Quality Detection of Diamond Wire Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 123-134.
[11] LI Yang, GOU Gang. Lightweight Garbage Detection Method Based on Improved YOLOX [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 80-90.
[12] WEI Mingjun, ZHOU Taiyu, JI Zhanlin, ZHANG Xinnan. Detection Method of Mask Wearing in Public Places Based on YOLOv3 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 76-86.
[13] LI Yongjie, ZHOU Guihong, LIU Bo. Fusion Algorithm of Face Detection and Head Pose Estimation Based on YOLOv3 Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 95-103.
[14] ZHANG Wenlong, NAN Xinyuan. Road Vehicle Tracking Algorithm Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 49-57.
[15] CHEN Wenkang, LU Shenglian, LIU Binghao, LI Guo, LIU Xiaoyu, CHEN Ming. Real-time Citrus Recognition under Orchard Environment by Improved YOLOv4 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 134-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HE Qing, LI Dong, LUO Siyuan, HE Yudong, LI Biao, WANG Qiang. Research Progress in Ultra-wideband Rydberg Atomic Antenna Technology[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 1 -19 .
[2] XU Lunhui, XU Runnan. Traffic Data Imputation Method of Road Network Based on Spatial-Temporal Matrix Factorization[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 20 -29 .
[3] LI Fanghao, LIU Liqun, WU Qingfeng. Microgrid Fault Location Based on Sniffing Strategy Slime Mould Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 30 -41 .
[4] YAN Minxiu, ZHAO Qi. Dynamic Analysis Multi-scroll Conservative Chaotic Systems Based on Controllable Width[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 42 -55 .