Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (2): 20-29.doi: 10.16088/j.issn.1001-6600.2024041102

• Physics and Electronic Engineering • Previous Articles     Next Articles

Traffic Data Imputation Method of Road Network Based on Spatial-Temporal Matrix Factorization

XU Lunhui1,2*, XU Runnan1   

  1. 1. School of Computer Science, Guangdong University of Science and Technology, Dongguan Guangdong 523083, China;
    2. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou Guangdong 510641, China
  • Received:2024-04-11 Revised:2024-06-06 Online:2025-03-05 Published:2025-04-02

Abstract: To tackle the issue of missing traffic data in urban road network, this paper proposes a road network traffic data imputation method based on the spatial-temporal matrix factorization (namely STMF). Based on the spatiotemporal properties of the road network, this study first processes the multidimensional traffic data into a 2D matrix, then decomposes it into a spatial feature matrix and a temporal feature matrix and reconstructs the incomplete traffic data matrix by a low-rank approximation to achieve the basic repair of the missing data. Then graph Laplacian (GL) and gated recurrent network (GRN) are used as spatial and temporal regularizers respectively, to further mine spatial topology information and temporal dependencies of the urban road network and enhance the accuracy of matrix reconstruction and missing value imputation. Finally, the Los Angeles Traffic Speed dataset (Metr-LA) and Guangzhou Traffic dataset (Guangzhou-D) are used to compare the performance of STMF model with benchmark models such as GAIN, BGCP, BTMF, LRTC-TNN and HaLRTC. The experimental results show that, compared with the benchmark model, the proposed STMF model based on temporal matrix decomposition can better adapt to different missing scenarios and different missing rates, and the performance of missing data repair is more robust.

Key words: intelligent transportation, data imputation, matrix factorization, traffic data, graph Laplacian, gated recurrent network

CLC Number:  U491
[1] LI R N, QIN Y, WANG J B, et al. AMGB: trajectory prediction using attention-based mechanism GCN-BiLSTM in IOV[J]. Pattern Recognition Letters, 2023, 169: 17-27. DOI: 10.1016/j.patrec.2023.03.006.
[2] CHEN X Y, SUN L J. Bayesian temporal factorization for multidimensional time series prediction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(9): 4659-4673. DOI: 10.1109/TPAMI.2021.3066551.
[3] LI J L, LI R N, HUANG Z L, et al. Dynamic adaptive generative adversarial networks with multi-view temporal factorizations for hybrid recovery of missing traffic data[J]. Neural Computing and Applications, 2023, 35(10): 7677-7696. DOI: 10.1007/s00521-022-08064-w.
[4] 徐东伟,彭航,商学天,等.基于图自编码-生成对抗网络的路网数据修复[J].交通运输系统工程与信息,2021,21(6):33-41.DOI: 10.16097/j.cnki.1009-6744.2021.06.005.
[5] CHEN X Y, HE Z C, SUN L J. A Bayesian tensor decomposition approach for spatiotemporal traffic data imputation[J]. Transportation Research Part C: Emerging Technologies, 2019, 98: 73-84. DOI: 10.1016/j.trc.2018.11.003.
[6] YOON J, JORDON J, SCHAAR M. GAIN: missing data imputation using generative adversarial nets[J]. Proceedings of Machine Learning Research, 2018, 80: 5689-5698.
[7] 张伟健,邴其春,沈富鑫,等.城市快速路路段行程时间估计方法[J].广西师范大学学报(自然科学版),2023,41(2):49-57.DOI: 10.16088/j.issn.1001-6600.2022032504.
[8] LI R N, QIN Y, WANG C H, et al. A blockchain-enabled framework for enhancing scalability and security in IIoT[J]. IEEE Transactions on Industrial Informatics, 2023, 19(6): 7389-7400. DOI: 10.1109/TII.2022.3210216.
[9] WU P, HUANG Z L, PIAN Y Z, et al. A combined deep learning method with attention-based LSTM model for short-term traffic speed forecasting[J]. Journal of Advanced Transportation, 2020, 2020: 8863724. DOI: 10.1155/2020/8863724.
[10] 陈昆,曲大义,王少杰,等.基于二次分解和融合多特征的短时交通流量组合预测模型[J].广西师范大学学报(自然科学版),2023,41(4):33-46.DOI: 10.16088/j.issn.1001-6600.2022062803.
[11] LI J L, XU L H, LI R N, et al. Deep spatial-temporal bi-directional residualoptimisation based on tensor decomposition for traffic data imputation on urban road network[J]. Applied Intelligence, 2022, 52(10): 11363-11381. DOI: 10.1007/s10489-021-03060-4.
[12] 蔡丽坤,吴运兵,陈甘霖,等.基于生成对抗网络的类别文本生成[J].广西师范大学学报(自然科学版),2022,40(4):79-90.DOI: 10.16088/j.issn.1001-6600.2021093002.
[13] 许伦辉,李金龙,李若南,等.基于动态生成对抗网络的路网缺失交通数据修复[J].广西师范大学学报(自然科学版),2024,42(2):30-40.DOI: 10.16088/j.issn.1001-6600.2023051402.
[14] JIA X Y, DONG X Y, CHEN M, et al. Missing data imputation for traffic congestion data based on joint matrix factorization[J]. Knowledge-Based Systems, 2021, 225: 107114. DOI: 10.1016/j.knosys.2021.107114.
[15] LEI M Y, LABBE A, WU Y K, et al. Bayesian kernelized matrix factorization for spatiotemporal traffic data imputation and kriging[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 18962-18974. DOI: 10.1109/TITS.2022.3161792.
[16] CHEN X Y, YANG J M, SUN L J. A nonconvex low-rank tensor completion model for spatiotemporal traffic data imputation[J]. Transportation Research Part C: Emerging Technologies, 2020, 117: 102673. DOI: 10.1016/j.trc.2020.102673.
[17] GAO Y, YANG L T, YANG J, et al. Jointly low-rank tensor completion for estimating missing spatiotemporal values in logistics systems[J]. IEEE Transactions on Industrial Informatics, 2023, 19(2): 1814-1822. DOI: 10.1109/TII.2022.3190549.
[18] LIU J, MUSIALSKI P, WONKA P, et al. Tensor completion for estimating missing values in visual data[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 208-220. DOI: 10.1109/TPAMI.2012.39.
[19] 王力,李敏,闫佳庆,等.基于生成式对抗网络的路网交通流数据补全方法[J].交通运输系统工程与信息,2018,18(6):63-71.DOI: 10.16097/j.cnki.1009-6744.2018.06.010.
[20] LI J L, SUN L J, LI R N, et al. Application of siSVR-Vis/NIR to the nondestructive determination of acid detergent fiber content in corn straw[J]. Optik, 2020, 202: 163717. DOI: 10.1016/j.ijleo.2019.163717.
[1] LI Xiangli, MEI Jianping, MO Yuanjian. Adaptive Semi-supervised Multi-view Clustering Based on Hypergraph Regular NMF [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 137-152.
[2] XU Lunhui, LI Jinlong, LI Ruonan, CHEN Junyu. Missing Traffic Data Recovery for Road Network Based on Dynamic Generative Adversarial Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 30-40.
[3] PENG Xinjian, WENG Xiaoxiong. Bus Travel Time Prediction Based on BP Neural Network Optimized by Firefly Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(1): 28-36.
[4] KUANG Xianyan, ZHU Lei, WU Yun, XU Chen. Bus Video Detection Based on Adaboost Algorithm and Color Feature [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 9-18.
[5] SU Yi-juan, SUN Ke, DENG Zhen-yun, YIN Ke-jun. KNN Imputation Algorithm Based on LPP and l2,1 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 55-62.
[6] ZHANG Shi-chao, ZHU Man-long, HUANG Liang-chang. QENNI:A New Imputation Method for Missing Data [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(1): 72-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HE Qing, LI Dong, LUO Siyuan, HE Yudong, LI Biao, WANG Qiang. Research Progress in Ultra-wideband Rydberg Atomic Antenna Technology[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 1 -19 .