Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (4): 137-152.doi: 10.16088/j.issn.1001-6600.2023110202

Previous Articles     Next Articles

Adaptive Semi-supervised Multi-view Clustering Based on Hypergraph Regular NMF

LI Xiangli1,2,3*, MEI Jianping1,3, MO Yuanjian1   

  1. 1. School of Mathematics & Computing Science, Guilin University of Electronic Techology, Guilin Guangxi 541004, China;
    2. Guangxi University Key Laboratory of Data Analysis and Calculation (Guilin University of Electronic Techology), Guilin Guangxi 541004, China;
    3. Center for Applied Mathematics of Guangxi (Guilin University of Electronic Techology), Guilin Guangxi 541004, China
  • Received:2023-11-02 Revised:2024-01-19 Online:2024-07-25 Published:2024-09-05

Abstract: Although graph regularized non-negative matrix factorization (GNMF) has become the basic framework for a large number of multi-view clustering methods, it is undoubtedly a great challenge to fuse complex data relationships from different views with a simple graph and obtain a consistent discriminative representation at the same time. In order to better deal with the clustering task of multi-view data,a semi-supervised multi-view clustering method based on hypergraph regularized non-negative matrix factorization is proposed. Specifically,by constructing a hypergraph,this method learns the high-order relationships of data from multiple views. In order to make reasonable use of the label information available in the real world,the label constraint is introduced for semi-supervised learning. In addition,this method considers the learning of consistency information and complementarity information at the same time,adopts adaptive measures to distinguish the contributions of different views,and uses an alternating iterative algorithm to optimize the objective function. The comparative experimental results on 7 real datasets show that the proposed algorithm is superior to other classical algorithms and current advanced algorithms in ACC and NMI indicators on 6 datasets.

Key words: hypergraph, non-negative matrix factorization, multi-view clustering, semi-supervised learning

CLC Number:  TP391.1
[1] SHAHNAZ F,BERRY M W,PAUCA V P,et al. Document clustering using nonnegative matrix factorization[J]. Information Processing & Management,2006,42(2):373-386. DOI: 10.1016/j.ipm.2004.11.005.
[2] 王纯杰,董小刚,刁心薇. 基于免疫粒子群的K均值聚类算法[J]. 广西师范大学学报(自然科学版),2008,26(3):165-168. DOI: 10.3969/j.issn.1001-6600.2008.03.041.
[3] DING C,HE X F, SIMON H D. On the equivalence of nonnegative matrix factorization and spectral clustering[C] //Procceedings of the 2005 SIAM International Conference on Data Mining. Philadelphia, PA: SIAM, 2005: 606-610. DOI: 10.1137/1.9781611972757.70.
[4] GRONE R,MERRIS R. The Laplacian spectrum of a fraph II[J]. Siam Journal on Discrete Mathematics,1994,7(2):221-229. DOI: 10.1137/S0895480191222653.
[5] 张荣国,曹俊辉,胡静,等. 基于非负正交矩阵分解的多视图聚类图像分割算法[J]. 模式识别与人工智能,2023,36(6):556-571. DOI: 10.16451/j.cnki.issn1003-6059.202306006.
[6] CAI D,HE X F,HAN J W,et al. Graph regularized nonnegative matrix factorization for data representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(8):1548-1560. DOI: 10.1109/TPAMI.2010.231.
[7] YI Y G,WANG J Z,ZHOU W,et al. Non-negative matrix factorization with locality constrained adaptive graph[J]. IEEE Transactions on Circuits and Systems for Video Technology,2020,30(2):427-441. DOI: 10.1109/TCSVT.2019.2892971.
[8] SHU Z Q,WU X J,FAN H H,et al. Parameter-less auto-weighted multiple graph regularized nonnegative matrix factorization for data representation[J]. Knowledge-Based Systems,2017,131:105-112. DOI: 10.1016/j.knosys.2017.05.029.
[9] 刘威,邓秀勤,刘冬冬,等. 基于约束图正则的块稀疏对称非负矩阵分解[J]. 计算机科学,2023,50(7):89-97. DOI: 10.11896/jsjkx.220500050.
[10] 刘国庆,卢桂馥,张强. 一种稀疏图正则化的非负低秩矩阵分解算法[J]. 重庆邮电大学学报(自然科学版),2020,32(2):295-303. DOI: 10.3979/j.issn.1673-825X.2020.02.017.
[11] DING J M,FANG X J,JIA L Y,et al. Diversity multi-view clustering with subspace and NMF-based manifold learning[J]. IEEE Access,2023,11:37041-37051. DOI: 10.1109/ACCESS.2023.3264837.
[12] LIU J L, WANG C, GAO J,et al. Multi-view clustering via joint nonnegative matrix factorization[C] //Proceedings of the 2013 SIAM International Conference on Data Mining. Philadelphia, PA: SIAM, 2013: 252-260. DOI: 10.1137/1.9781611972832.28.
[13] BRUNO E,MARCHAND-MAILLET S. Multiview clustering:a late fusion approach using latent models[C] //Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY: Association for Computing Machinery,2009:736-737. DOI: 10.1145/1571941.1572103.
[14] ZHANG D P,LUO Y H,YU Y Y,et al. Semi-supervised multi-view clustering with dual hypergraph regularized partially shared non-negative matrix factorization[J]. Science China Technological Sciences,2022,65(6):1349-1365. DOI: 10.1007/s11431-021-1957-3.
[15] SHANG F H,JIAO L C,WANG F. Graph dual regularization non-negative matrix factorization for co-clustering[J]. Pattern Recognition,2012,45(6):2237-2250. DOI: 10.1016/j.patcog.2011.12.015.
[16] ZHANG P,LIU X W,XIONG J,et al. Consensus one-step multi-view subspace clustering[J]. IEEE Transactions on Knowledge and Data Engineering,2022,34(10):4676-4689. DOI: 10.1109/TKDE.2020.3045770.
[17] WANG Q,JIANG X,CHEN M L,et al. Autoweighted multiview feature selection with graph optimization[J]. IEEE Transactions on Cybernetics,2022,52(12):12966-12977. DOI: 10.1109/TCYB.2021.3094843.
[18] 刘相男,丁世飞,王丽娟. 基于深度图正则化矩阵分解的多视图聚类算法[J]. 智能系统学报,2022,17(1):158-169. DOI: 10.11992/tis.202104046.
[19] 宗林林,张宪超,赵乾利,等. 一种多流形正则化的多视图非负矩阵分解算法[J]. 南京大学学报(自然科学),2017,53(3):557-568. DOI: 10.13232/j.cnki.jnju.2017.03.020.
[20] HIDRU D,GOLDENBERG A. EquiNMF:graph regularized multiview nonnegative matrix factorization[EB/OL]. (2014-09-14)[2023-11-02]. https://arxir.org/abs/1409.4018. DOI: 10.48550/arXiv.1409.4018.
[21] LUONG K,NAYAK R,BALASUBRAMANIAM T,et al. Multi-layer manifold learning for deep non-negative matrix factorization-based multi-view clustering[J]. Pattern Recognition,2022,131:108815. DOI: 10.1016/j.patcog.2022.108815.
[22] LIU W Z,LIU L Y,ZHANG Y,et al. Adaptive multi-view multiple-means clustering via subspace reconstruction[J]. Engineering Applications of Artificial Intelligence,2022,114:104986. DOI: 10.1016/j.engappai.2022.104986.
[23] LI C L,CHE H J,LEUNG M F,et al. Robust multi-view non-negative matrix factorization with adaptive graph and diversity constraints[J]. Information Sciences,2023,634:587-607. DOI: 10.1016/j.ins.2023.03.119.
[24] WANG D,GAO X B,WANG X M. Semi-supervised nonnegative matrix factorization via constraint propagation[J]. IEEE Transactions on Cybernetics,2016,46(1):233-244. DOI: 10.1109/TCYB.2015.2399533.
[25] 于晓,刘慧,林毓秀,等. 一致性引导的自适应加权多视图聚类[J]. 计算机研究与发展,2022,59(7):1496-1508. DOI: 10.7544/issn1000-1239.20210126.
[26] 宋成宝,柳平增,刘兴华,等. 基于HSIC的日光温室温度传感器优化配置策略[J]. 农业工程学报,2022,38(8):200-208. DOI: 10.11975/j.issn.1002-6819.2022.08.023.
[27] 吴颖豪,刘虹,张岐山. 基于改进成对约束扩充的标签传播聚类算法[J]. 计算机应用研究,2022,39(12):3592-3597. DOI: 10.19734/j.issn.1001-3695.2022.05.0244.
[28] 肖成龙,张重鹏,王珊珊,等. 基于流形正则化与成对约束的深度半监督谱聚类算法[J]. 系统科学与数学,2020,40(8):1325-1341. DOI: 10.12341/jssms13926.
[29] LIU H F,WU Z H,LI X L,et al. Constrained nonnegative matrix factorization for image representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(7):1299-1311. DOI: 10.1109/TPAMI.2011.217.
[30] CAI H,LIU B,XIAO Y S,et al. Semi-supervised multi-view clustering based on constrained nonnegative matrix factorization[J]. Knowledge-Based Systems,2019,182:104798. DOI: 10.1016/j.knosys.2019.06.006.
[31] ZHOU H,YIN H P,LI Y X,et al. Multiview clustering via exclusive non-negative subspace learning and constraint propagation[J]. Information Sciences,2021,552:102-117. DOI: 10.1016/j.ins.2020.11.037.
[32] SHANG F H,JIAO L C,SHI J R,et al. Robust positive semidefinite L-Isomap ensemble[J]. Pattern Recognition Letters,2011,32(4):640-649. DOI: 10.1016/j.patrec.2010.12.005.
[33] 陈璐瑶,刘奇龙,许云霞,等. 基于超图正则化非负Tucker分解的图像聚类算法[J]. 计算机工程,2022,48(4):197-205. DOI: 10.19678/j.issn.1000-3428.0060601.
[34] LEE D D,SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature,1999,401(6755):788-791. DOI: 10.1038/44565.
[35] WANG C P,ZHANG J S,WU T J,et al. Semi-supervised nonnegative matrix factorization with positive and negative label propagations[J]. Applied Intelligence,2022,52(9):9739-9750. DOI: 10.1007/s10489-021-02940-z.
[36] WANG J,TIAN F,YU H C,et al. Diverse non-negative matrix factorization for multiview data representation[J]. IEEE Transactions on Cybernetics,2018,48(9):2620-2632. DOI: 10.1109/TCYB.2017.2747400.
[37] ZHOU P,YE F,DU L. Spectral clustering with distinction and consensus learning on multiple views data[J]. PLoS ONE,2018,13(12):e0208494. DOI: 10.1371/journal.pone.0208494.
[38] LUETHI H J. Convex optimization[J]. Journal of the American Statistical Association,2015,100(471):1097. DOI: 10.1198/jasa.2005.s41.
[39] 高海燕,刘万金,黄恒君. 鲁棒自适应对称非负矩阵分解聚类算法[J]. 计算机应用研究,2023,40(4): 1024-1029. DOI: 10.19734/j.issn.1001-3695.2022.08.0414.
[40] YANG B,ZHANG X T,CHEN B D,et al. Efficient correntropy-based multi-view clustering with anchor graph embedding[J]. Neural Networks,2022,146:290-302. DOI: 10.1016/j.neunet.2021.11.027.
[41] TANG C,LIU X W,ZHU X Z,et al. CGD:multi-view clustering via cross-view graph diffusion[J].Proceedings of the AAAI Conference on Artificial Intelligence,2020,34(4):5924-5931. DOI: 10.1609/aaai.v34i04.6052.
[42] LI B,SHU Z Q,LIU Y B,et al. Multi-view clustering via label-embedded regularized NMF with dual-graph constraints[J]. Neurocomputing,2023,551:126521. DOI: 10.1016/j.neucom.2023.126521.
[43] BAI L,WANG J B,LIANG J Y,et al. New label propagation algorithm with pairwise constraints[J]. Pattern Recognition,2022,106:107411. DOI: 10.1016/j.patcog.2020.107411.
[1] YU Tingying, SHI Changyao, LI Kezan. Hypergraph Synchronization with Uncertain Coupling Mechanism under Pinning Control [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 140-151.
[2] YANG Shuozhen, ZHANG Long, WANG Jianhua, ZHANG Hengyuan. Review of Sound Event Detection [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 1-18.
[3] ZHAO Hongtao, LIU Zhiwei. Decompositions of λ-fold Complete Bipartite 3-uniform Hypergraphs λK(3)n,n into Hypergraph Triangular Bipyramid [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 93-98.
[4] LU Guang-quan, XIE Yang-cai, LIU Xing, ZHANG Shi-chao. An Improvement Semi-supervised Learning Based on KNN Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(1): 45-49.
[5] ZHAO Tao-tao, HONG Yu, HUA Zhen-wei, ZHAO Ming-ming, YAO Jian-min. Freedom Computation Based on Tri-training in Chinese Phrase Translation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(3): 122-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHAO Jie, SONG Shuang, WU Bin. Overview of Image USM Sharpening Forensics and Anti-forensics Techniques[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 1 -16 .
[2] AI Congcong, GONG Guoli, JIAO Xiaoyu, TIAN Lu, GAI Zhongchao, GOU Jingxuan, LI Hui. Komagataella phaffii Serves as a Model Organism for Emerging Basic Research[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 17 -26 .
[3] ZHAI Yanhao, WANG Yanwu, LI Qiang, LI Jingkun. Progress of Dissolved Organic Matter in Inland Water by Three-Dimensional Fluorescence Spectroscopy Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 34 -46 .
[4] CHEN Li, TANG Mingzhu, GUO Shenghui. Cyber-Physical Systems State Estimation and Actuator Attack Reconstruction of Intelligent Vehicles[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 59 -69 .
[5] LI Chengqian, SHI Chen, DENG Minyi. Study for the Electrocardiographic Signal of Brugada Syndrome Patients Using Cellular Automaton[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 86 -98 .
[6] LÜ Hui, LÜ Weifeng. Fundus Hemorrhagic Spot Detection Algorithm Based on Improved YOLOv5[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 99 -107 .
[7] YI Jianbing, PENG Xin, CAO Feng, LI Jun, XIE Weijia. Research on Point Cloud Registration Algorithm Based on Multi-scale Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 108 -120 .
[8] LI Li, LI Haoze, LI Tao. Multi-primary-node Byzantine Fault-Tolerant Consensus Mechanism Based on Raft[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 121 -130 .
[9] ZHAO Xiaomei, DING Yong, WANG Haitao. Maximum Likelihood DOA Estimation Based on Improved Monarch Butterfly Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 131 -140 .
[10] ZHU Yan, CAI Jing, LONG Fang. Statistical Analysis of Partially Step Stress Accelerated Life Tests for Compound Rayleigh Distribution Competing Failure Model Under Progressive Type-Ι Hybrid Censoring[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 159 -169 .