Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (4): 137-152.doi: 10.16088/j.issn.1001-6600.2023110202
Previous Articles Next Articles
LI Xiangli1,2,3*, MEI Jianping1,3, MO Yuanjian1
[1] SHAHNAZ F,BERRY M W,PAUCA V P,et al. Document clustering using nonnegative matrix factorization[J]. Information Processing & Management,2006,42(2):373-386. DOI: 10.1016/j.ipm.2004.11.005. [2] 王纯杰,董小刚,刁心薇. 基于免疫粒子群的K均值聚类算法[J]. 广西师范大学学报(自然科学版),2008,26(3):165-168. DOI: 10.3969/j.issn.1001-6600.2008.03.041. [3] DING C,HE X F, SIMON H D. On the equivalence of nonnegative matrix factorization and spectral clustering[C] //Procceedings of the 2005 SIAM International Conference on Data Mining. Philadelphia, PA: SIAM, 2005: 606-610. DOI: 10.1137/1.9781611972757.70. [4] GRONE R,MERRIS R. The Laplacian spectrum of a fraph II[J]. Siam Journal on Discrete Mathematics,1994,7(2):221-229. DOI: 10.1137/S0895480191222653. [5] 张荣国,曹俊辉,胡静,等. 基于非负正交矩阵分解的多视图聚类图像分割算法[J]. 模式识别与人工智能,2023,36(6):556-571. DOI: 10.16451/j.cnki.issn1003-6059.202306006. [6] CAI D,HE X F,HAN J W,et al. Graph regularized nonnegative matrix factorization for data representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(8):1548-1560. DOI: 10.1109/TPAMI.2010.231. [7] YI Y G,WANG J Z,ZHOU W,et al. Non-negative matrix factorization with locality constrained adaptive graph[J]. IEEE Transactions on Circuits and Systems for Video Technology,2020,30(2):427-441. DOI: 10.1109/TCSVT.2019.2892971. [8] SHU Z Q,WU X J,FAN H H,et al. Parameter-less auto-weighted multiple graph regularized nonnegative matrix factorization for data representation[J]. Knowledge-Based Systems,2017,131:105-112. DOI: 10.1016/j.knosys.2017.05.029. [9] 刘威,邓秀勤,刘冬冬,等. 基于约束图正则的块稀疏对称非负矩阵分解[J]. 计算机科学,2023,50(7):89-97. DOI: 10.11896/jsjkx.220500050. [10] 刘国庆,卢桂馥,张强. 一种稀疏图正则化的非负低秩矩阵分解算法[J]. 重庆邮电大学学报(自然科学版),2020,32(2):295-303. DOI: 10.3979/j.issn.1673-825X.2020.02.017. [11] DING J M,FANG X J,JIA L Y,et al. Diversity multi-view clustering with subspace and NMF-based manifold learning[J]. IEEE Access,2023,11:37041-37051. DOI: 10.1109/ACCESS.2023.3264837. [12] LIU J L, WANG C, GAO J,et al. Multi-view clustering via joint nonnegative matrix factorization[C] //Proceedings of the 2013 SIAM International Conference on Data Mining. Philadelphia, PA: SIAM, 2013: 252-260. DOI: 10.1137/1.9781611972832.28. [13] BRUNO E,MARCHAND-MAILLET S. Multiview clustering:a late fusion approach using latent models[C] //Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY: Association for Computing Machinery,2009:736-737. DOI: 10.1145/1571941.1572103. [14] ZHANG D P,LUO Y H,YU Y Y,et al. Semi-supervised multi-view clustering with dual hypergraph regularized partially shared non-negative matrix factorization[J]. Science China Technological Sciences,2022,65(6):1349-1365. DOI: 10.1007/s11431-021-1957-3. [15] SHANG F H,JIAO L C,WANG F. Graph dual regularization non-negative matrix factorization for co-clustering[J]. Pattern Recognition,2012,45(6):2237-2250. DOI: 10.1016/j.patcog.2011.12.015. [16] ZHANG P,LIU X W,XIONG J,et al. Consensus one-step multi-view subspace clustering[J]. IEEE Transactions on Knowledge and Data Engineering,2022,34(10):4676-4689. DOI: 10.1109/TKDE.2020.3045770. [17] WANG Q,JIANG X,CHEN M L,et al. Autoweighted multiview feature selection with graph optimization[J]. IEEE Transactions on Cybernetics,2022,52(12):12966-12977. DOI: 10.1109/TCYB.2021.3094843. [18] 刘相男,丁世飞,王丽娟. 基于深度图正则化矩阵分解的多视图聚类算法[J]. 智能系统学报,2022,17(1):158-169. DOI: 10.11992/tis.202104046. [19] 宗林林,张宪超,赵乾利,等. 一种多流形正则化的多视图非负矩阵分解算法[J]. 南京大学学报(自然科学),2017,53(3):557-568. DOI: 10.13232/j.cnki.jnju.2017.03.020. [20] HIDRU D,GOLDENBERG A. EquiNMF:graph regularized multiview nonnegative matrix factorization[EB/OL]. (2014-09-14)[2023-11-02]. https://arxir.org/abs/1409.4018. DOI: 10.48550/arXiv.1409.4018. [21] LUONG K,NAYAK R,BALASUBRAMANIAM T,et al. Multi-layer manifold learning for deep non-negative matrix factorization-based multi-view clustering[J]. Pattern Recognition,2022,131:108815. DOI: 10.1016/j.patcog.2022.108815. [22] LIU W Z,LIU L Y,ZHANG Y,et al. Adaptive multi-view multiple-means clustering via subspace reconstruction[J]. Engineering Applications of Artificial Intelligence,2022,114:104986. DOI: 10.1016/j.engappai.2022.104986. [23] LI C L,CHE H J,LEUNG M F,et al. Robust multi-view non-negative matrix factorization with adaptive graph and diversity constraints[J]. Information Sciences,2023,634:587-607. DOI: 10.1016/j.ins.2023.03.119. [24] WANG D,GAO X B,WANG X M. Semi-supervised nonnegative matrix factorization via constraint propagation[J]. IEEE Transactions on Cybernetics,2016,46(1):233-244. DOI: 10.1109/TCYB.2015.2399533. [25] 于晓,刘慧,林毓秀,等. 一致性引导的自适应加权多视图聚类[J]. 计算机研究与发展,2022,59(7):1496-1508. DOI: 10.7544/issn1000-1239.20210126. [26] 宋成宝,柳平增,刘兴华,等. 基于HSIC的日光温室温度传感器优化配置策略[J]. 农业工程学报,2022,38(8):200-208. DOI: 10.11975/j.issn.1002-6819.2022.08.023. [27] 吴颖豪,刘虹,张岐山. 基于改进成对约束扩充的标签传播聚类算法[J]. 计算机应用研究,2022,39(12):3592-3597. DOI: 10.19734/j.issn.1001-3695.2022.05.0244. [28] 肖成龙,张重鹏,王珊珊,等. 基于流形正则化与成对约束的深度半监督谱聚类算法[J]. 系统科学与数学,2020,40(8):1325-1341. DOI: 10.12341/jssms13926. [29] LIU H F,WU Z H,LI X L,et al. Constrained nonnegative matrix factorization for image representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(7):1299-1311. DOI: 10.1109/TPAMI.2011.217. [30] CAI H,LIU B,XIAO Y S,et al. Semi-supervised multi-view clustering based on constrained nonnegative matrix factorization[J]. Knowledge-Based Systems,2019,182:104798. DOI: 10.1016/j.knosys.2019.06.006. [31] ZHOU H,YIN H P,LI Y X,et al. Multiview clustering via exclusive non-negative subspace learning and constraint propagation[J]. Information Sciences,2021,552:102-117. DOI: 10.1016/j.ins.2020.11.037. [32] SHANG F H,JIAO L C,SHI J R,et al. Robust positive semidefinite L-Isomap ensemble[J]. Pattern Recognition Letters,2011,32(4):640-649. DOI: 10.1016/j.patrec.2010.12.005. [33] 陈璐瑶,刘奇龙,许云霞,等. 基于超图正则化非负Tucker分解的图像聚类算法[J]. 计算机工程,2022,48(4):197-205. DOI: 10.19678/j.issn.1000-3428.0060601. [34] LEE D D,SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature,1999,401(6755):788-791. DOI: 10.1038/44565. [35] WANG C P,ZHANG J S,WU T J,et al. Semi-supervised nonnegative matrix factorization with positive and negative label propagations[J]. Applied Intelligence,2022,52(9):9739-9750. DOI: 10.1007/s10489-021-02940-z. [36] WANG J,TIAN F,YU H C,et al. Diverse non-negative matrix factorization for multiview data representation[J]. IEEE Transactions on Cybernetics,2018,48(9):2620-2632. DOI: 10.1109/TCYB.2017.2747400. [37] ZHOU P,YE F,DU L. Spectral clustering with distinction and consensus learning on multiple views data[J]. PLoS ONE,2018,13(12):e0208494. DOI: 10.1371/journal.pone.0208494. [38] LUETHI H J. Convex optimization[J]. Journal of the American Statistical Association,2015,100(471):1097. DOI: 10.1198/jasa.2005.s41. [39] 高海燕,刘万金,黄恒君. 鲁棒自适应对称非负矩阵分解聚类算法[J]. 计算机应用研究,2023,40(4): 1024-1029. DOI: 10.19734/j.issn.1001-3695.2022.08.0414. [40] YANG B,ZHANG X T,CHEN B D,et al. Efficient correntropy-based multi-view clustering with anchor graph embedding[J]. Neural Networks,2022,146:290-302. DOI: 10.1016/j.neunet.2021.11.027. [41] TANG C,LIU X W,ZHU X Z,et al. CGD:multi-view clustering via cross-view graph diffusion[J].Proceedings of the AAAI Conference on Artificial Intelligence,2020,34(4):5924-5931. DOI: 10.1609/aaai.v34i04.6052. [42] LI B,SHU Z Q,LIU Y B,et al. Multi-view clustering via label-embedded regularized NMF with dual-graph constraints[J]. Neurocomputing,2023,551:126521. DOI: 10.1016/j.neucom.2023.126521. [43] BAI L,WANG J B,LIANG J Y,et al. New label propagation algorithm with pairwise constraints[J]. Pattern Recognition,2022,106:107411. DOI: 10.1016/j.patcog.2020.107411. |
[1] | YU Tingying, SHI Changyao, LI Kezan. Hypergraph Synchronization with Uncertain Coupling Mechanism under Pinning Control [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 140-151. |
[2] | YANG Shuozhen, ZHANG Long, WANG Jianhua, ZHANG Hengyuan. Review of Sound Event Detection [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 1-18. |
[3] | ZHAO Hongtao, LIU Zhiwei. Decompositions of λ-fold Complete Bipartite 3-uniform Hypergraphs λK(3)n,n into Hypergraph Triangular Bipyramid [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 93-98. |
[4] | LU Guang-quan, XIE Yang-cai, LIU Xing, ZHANG Shi-chao. An Improvement Semi-supervised Learning Based on KNN Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(1): 45-49. |
[5] | ZHAO Tao-tao, HONG Yu, HUA Zhen-wei, ZHAO Ming-ming, YAO Jian-min. Freedom Computation Based on Tri-training in Chinese Phrase Translation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(3): 122-125. |
|