Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (6): 173-184.doi: 10.16088/j.issn.1001-6600.2021092302

Previous Articles     Next Articles

Two Algorithms for Prognosis of DenitrificationConditions of A2/O Technology

XIAO Fei1,2, KANG Zengyan3, WANG Weihong1*   

  1. 1. College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi Xinjiang 830052, China;
    2. College of Water Resources and Architectural Engineering, Tarim University, Aral Xinjiang 843300, China;
    3. China Constrution Third Bureau Installation Engineering Co., Ltd, Wuhan Hubei 430079, China
  • Received:2021-09-23 Revised:2021-11-29 Online:2022-11-25 Published:2023-01-17

Abstract: With the rapid development of urbanization, water pollution is becoming more serious, while the types of receiving water bodies in urban wastewater treatment plants are becoming increasingly complex, resulting in substandard drainage water quality of wastewater treatment plants. In this paper, the A2/O process of Toutunhe wastewater treatment plant in Urumqi, Xinjiang is taken as the research object. Based on the single-factor test, the Box-Behnken response surface method is used, combined with both BP neural network (RSM-BP) and genetic algorithm-ANN neural network (GA-NN), so as to optimize and predict the nitrogen removal conditions of the A2/O process. The results showed that the factors affecting the TN removal rate were organic load (F/M) > carbon-nitrogen ratio (C/N) > carbon-phosphorus ratio (C/P), while the optimal process conditions optimized by RSM-BP were C/N=8.95, C/P=72.01 and F/M=0.088 d-1. The predicted TN removal rate was 79.12%, the validated value was 77.36%, and the relative error value was 2.275%. The optimal process conditions optimized by GA-NN were C/N=9.00, C/P=72.15 and F/M=0.09 d-1. The predicted value of TN removal rate was 79.25%, the validated value was 78.71%, and the relative error value was 0.686%. The higher TN removal rate was, the smaller error predicted by GA-NN, which indicates that the application of GA-NN algorithm in A2/O process is effective, which can also provide theoretical guidance for the operation of wastewater treatment plant.

Key words: A2/O process, response surface method, genetic algorithm, neural network, total nitrogen

CLC Number: 

  • X703
[1] 乔俊飞,卢超,王磊,等.城市污水处理过程模型研究综述[J].信息与控制,2018,47(2): 129-139.DOI: 10.13976/j.cnki.xk.2018.0129.
[2] 杜胜利,张庆达,曹博琦,等.城市污水处理过程模型预测控制研究综述[J].信息与控制, 2022, 51(1): 41-53.
[3] 孙晓杰, 李倩, 吴燕华, 等. SBR中煤粉粒径对模拟生活污水处理效果的影响[J]. 桂林理工大学学报, 2022, 42(1): 192-195. DOI: 10.3969/j.issn1674-9057.2022.01.021.
[4] 秦永丽, 蒋永荣, 孙晓杰. 独立园区夏冬两季污水处理及微生物群落特征分析[J]. 桂林电子科技大学学报, 2021, 41(4): 329-335. DOI: 10.16725/j.cnki.cn45-1351/tn.2021.04.001.
[5] 黄付平, 成官文, 邹清川. 城镇污水处理厂试运行效果及其能耗: 以贵港市石卡镇污水处理厂为例[J]. 桂林理工大学学报, 2018, 38(1): 145-149. DOI: 10.3969/j.issn.1674-9057.2018.01.021.
[6] 任相浩,古丽皮耶·图尔荪,梁明杰.A2O工艺应用于化学制药废水脱氮效果研究[J].绿色科技,2021,23(10): 133-134,138.DOI: 10.16663/j.cnki.lskj.2021.10.047.
[7] 计建洪.印染废水为主的污水处理工艺改造实例分析[J].印染助剂,2016,33(10): 54-56.DOI: 10.3969/j.issn.1004-0439.2016.10.013.
[8] 吴海珍,孙胜利,刘国新,等.焦化废水A2/O和A/O/H/O处理工艺中多环芳烃的削减行为分析[J].环境科学,2018,39(9): 4265-4273.DOI: 10.13227/j.hjkx.201801079.
[9] 王卓艺,张鸿涛,李东玲,等.A2/O和MBR组合工艺在寒冷地区污水处理中的应用[J].中国给水排水,2020,36(18): 70-74.DOI: 10.19853/j.zgjsps.1000-4602.2020.18.013.
[10] 丁晓倩.污水脱氮除磷及N2O产生过程数学模拟[D].西安:长安大学,2017.
[11] 李佟,李军.基于BP神经网络与马尔可夫链的污水处理厂脱氮效果模拟预测[J].环境科学学报,2016,36(2): 576-581. DOI: 10.13671/j.hjkxxb.2015.0559.
[12] AYAT A, ARRIS S, ABAZ A, et al. Application of response surface methodology for modeling and optimization of A bio coagulation process (sewage wastewater treatment plant)[J]. Environmental Management, 2021, 67(3): 489-497.DOI: 10.1007/s00267-020-01407-0.
[13] SZATYOWICZ E, SKOCZKO I, OFMAN P. Using artificial neural networks for modeling wastewater treatment in small wastewater treatment plant[J]. Rocznik Ochrona Srodowiska, 2016, 18(1): 493-506.
[14] 肖飞, 董文明,王维红.基于响应面法优化污水处理厂脱氮工艺研究[J].广西师范大学学报(自然科学版) ,2021,39(5): 210-221.DOI: 10.16088/j.issn.1001-6600.2020091401.
[15] 韩红桂,杨士恒,张璐,等.城市污水处理过程出水氨氮优化控制[J].上海交通大学学报,2020,54(9): 916-923.DOI: 10.16183/j.cnki.jsjtu.2020.170.
[16] 张璐,张嘉成,韩红桂,等.基于模糊神经网络的污水处理生化除磷过程控制[J].化工学报,2020,71(3): 1217-1225.DOI: 10.11949/0438-1157.20191514.
[17] MULAS M, TRRONCI S, CORONA F, et al. Predictive control of an activated sludge process: an application to the Viikinmki wastewater treatment plant[J]. Journal of Process Control, 2015, 35: 89-100.DOI: 10.1016/j.jprocont.2015.08.005.
[18] 赵小强,李丽娟,冯小林.基于改进多目标布谷鸟算法的污水处理优化控制方法[J].兰州理工大学学报,2020,46(1): 93-99.
[19] 肖飞,董文明,王维红.含氮污染物耦合算法联合优化研究[J].重庆理工大学学报(自然科学),2021,35(6): 220-229.
[20] 国家环境保护总局.水和废水监测分析方法[M].4版. 北京: 中国环境科学出版社, 2002: 425-426.
[21] 侯红娟,王洪洋,周琪.进水COD浓度及C/N值对脱氮效果的影响[J].中国给水排水,2005, 21(12): 19-23.DOI: 10.1360/biodiv.050058.
[22] 杨小丽,叶峰,宋海亮,等.基于污水厂运行数据的低温生物脱氮强化研究[J].中国给水排水,2009,25(1): 82-85,88.DOI: 10.3321/j.issn:1000-4602.2009.01.021.
[23] 彭轶. A2/O工艺反硝化除磷性能及控制策略[D].哈尔滨: 哈尔滨工业大学,2008.
[24] 甄建园,于德爽,王晓霞,等.进水C/P对SNEDPR系统脱氮除磷性能的影响[J].环境科学,2019,40(1): 343-351.DOI: 10.13227/j.hjkx.201806006.
[25] 赵丰,戴兴春,黄民生,等.负荷(F/M)对A2/O工艺脱氮影响的研究[J].水处理技术,2009,35(7): 59-63.DOI: 10.16796/j.cnki.1000-3770.2009.07.019.
[26] NGUYEN H T M, TRAN H T H. Effect of organic matter on nitrogen removal through the anammox process[J]. Water Environment Research, 2021,93(4): 608-619.DOI: 10.1002/wer.1463.
[27] 司家济,张静,张辉,等.基于污水处理厂监测数据的反硝化脱氮影响因素分析[J].环境监测管理与技术,2021,33(2): 56-59.DOI: 10.19501/j.cnki.1006-2009.2021.02.013.
[28] 李怡,朱恒亮.C/N对A2/O耦合生物曝气滤池脱氮除磷的影响[J].水处理技术,2018,44(9): 120-123.DOI: 10.16796/j.cnki.1000-3770.2018.09.027.
[29] SUN H W, SHI W Y, CAI C J, et al. Responses of microbial structures, functions, metabolic pathways and community interactions to different C/N ratios in aerobic nitrification[J]. Bioresource Technology,2020,311: 123422.DOI: 10.1016/j.biortech.2020.123422.
[30] 杨咪,徐盼盼,钱会,等.基于人工蜂群算法的BP双隐含层神经网络水质模型[J].环境监测管理与技术,2018,30(1): 21-26.DOI: 10.3969/j.issn.1006-2009.2018.01.007.
[31] 闫春,厉美璇,周潇.基于改进的遗传算法优化BP神经网络的车险欺诈识别模型[J].山东科技大学学报(自然科学版),2019,38(5): 72-80.DOI: 10.16452/j.cnki.sdkjzk.2019.05.009.
[32] 楼春华,郭敏丽.基于SPSS的多维标度法在污水处理达标保证中的应用[C]// 北京水问题研究与实践(2018年).北京: 中国水利水电出版社,2019: 87-93.
[33] 柳勇,董宝刚,徐超,等.合肥市污水处理厂进水水质特征的统计学分析[J].净水技术,2021,40(8): 68-73,80.DOI: 10.15890/j.cnki.jsjs.2021.08.010.
[34] 董林. 某污水处理厂常规污染物处理效率及影响因素分析[D].泰安: 山东农业大学,2020.
[35] 张涛. 基于复杂网络理论的遗传算法分析与设计[D].南京: 南京邮电大学,2019: 48-77.
[36] 郑淏,薛惠锋,冯海涛.基于BP神经网络的地表水污染指标短期预测分析[J].陕西科技大学学报(自然科学版),2016,34(3): 161-165,170.DOI: 10.3969/j.issn.1000-5811.2016.03.032.
[37] 丁海旭,李文静,叶旭东,等.基于自组织递归模糊神经网络的BOD软测量[J].计算机与应用化学,2019,36(4): 331-336.DOI: 10.16866/j.com.app.chem201904008.
[38] 黄辉,马思佳,王庆,等.多参数影响下污水总氮浓度预测最优方法研究[J].南京大学学报(自然科学),2017,53(6): 1194-1202.DOI: 10.13232/j.cnki.jnju.2017.06.022.
[39] 林佳敏,陈金良,林晶晶,等.BP神经网络和ARIMA模型对污水处理厂出水总氮浓度的模拟预测[J].环境工程技术学报,2019,9(5): 573-578. DOI: 10.12153/j.issn.1674-991X.2019.03.261.
[1] PAN Haiming, CHEN Qingfeng, QIU Jie, HE Naixu, LIU Chunyu, DU Xiaojing. Multi-hop Knowledge Graph Question Answering Based on Convolution Reasoning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 102-112.
[2] ZHANG Tao, DU Jianmin. Research on Micro-patch Identification of Desert Grassland Based on UAV Remote Sensing [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 50-58.
[3] HAO Yaru, DONG Li, XU Ke, LI Xianxian. Interpretability of Pre-trained Language Models: A Survey [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 59-71.
[4] TIAN Sheng, SONG Lin. Traffic Sign Recognition Based on CNN and Bagging Integration [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 35-46.
[5] ZHOU Shengkai, FU Lizhen, SONG Wen’ai. Semantic Similarity Computing Model for Short Text Based on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 49-56.
[6] DUAN Meiling, PAN Julong. Wearable Fall Detection Based on Bi-directional LSTM Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 141-150.
[7] KONG Yayu, LU Yujie, SUN Zhongtian, XIAO Jingxian, HOU Haochen, CHEN Tingwei. Research on Graph Neural Network Recommendation Algorithms for Reinforcing Current Interest [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 151-160.
[8] LIN Peiqun, HE Huohua, LIN Xukun. Multi-scale Prediction of Expressways' Arrival Volume of Large and Medium-sized Trucks Based on System Relevance [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 15-26.
[9] MA Chengxu, ZENG Shangyou, ZHAO Junbo, CHEN Hongyang. Research on Backlight Image Enhancement Based on Convolutional Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 81-90.
[10] TAN Kai, LI Yongjie, PAN Haiming, HUANG Kexin, QIU Jie, CHEN Qingfeng. Study on Multi-information Integration for Drug Target Prediction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 91-102.
[11] ZHU Enwen, ZHU Anqi, WANG Jiedan, LIU Yujiao. Research on Wind Power Short-term Prediction Based on EEMD-GA-BP Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 166-174.
[12] TIAN Sheng, LI Chengwei, HUANG Wei, WANG Lei. Forecasting Method of Highway Freight Volume Based on GC-rBPNN Model during COVID-19 Epidemic [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 24-32.
[13] CHEN Wenkang, LU Shenglian, LIU Binghao, LI Guo, LIU Xiaoyu, CHEN Ming. Real-time Citrus Recognition under Orchard Environment by Improved YOLOv4 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 134-146.
[14] XIAO Fei, DONG Wenming, WANG Weihong. Optimization of Wastewater Containing Nitrogen in Wastewater Treatment Plant Based on Response Surface Methodology [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 210-221.
[15] HU Juntao, SHI Xiaohu, MA Deyin. Nursing Workers Scheduling Based on Mean Shift and Genetic Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 27-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Jianhua, XI Qingnan, LI Bing, LIAO Pengying, HUO Lini, LU Rumei. Chemical Constituents from a Zhuang Medicine of Jasminum nervosum Lour.[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 94 -97 .
[2] ZHANG Hui-ying, LIU Rui-qiang. A Comparative Study on Salt Solubility, Densities and Refractive Indices in Ternary Systems Composed of Alkali Metal (Na, K, Rb, and Cs) Nitrate, Alcohol, and Water[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 87 -95 .
[3] KUANG Xianyan, CHEN Ziru. Mixed Traffic Flow Model of Signalized Intersections Involving Pedestrian Comity[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 1 -15 .
[4] LIU Weiming, CHEN Gangmei, LIN Guanrong, LI Jingning. Coordination Control Method for Toll Station of Freeway and Adjacent Intersection[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 16 -26 .
[5] ZOU Yanli, WANG Yang, LIU Shusheng, YAO Fei. Study of Cascading Failure in the Grid under the Capacity Load Model with Neighbors Degree Information[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 27 -36 .
[6] XIE Lina, JIANG Pinqun, SONG Shuxiang, CEN Mingcan. A Low-Loss, Low-Noise, Wide-Tuned High-Order Cascade N-Path Filter[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 37 -44 .
[7] LUO Lan, ZHOU Nan, SI Jie. New Delay Partition Method for Robust Stability of Uncertain Cellular Neural Networks with Time-Varying Delays[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 45 -52 .
[8] WANG Jian, ZHENG Qifan, LI Chao, SHI Jing. Remote Supervision Relationship Extraction Based on Encoder and Attention Mechanism[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 53 -60 .
[9] XIAO Yiqun, SONG Shuxiang, XIA Haiying. Fast Pedestrian Detection Method Based on Multi-Features    and Implementation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 61 -67 .
[10] WANG Xun, LI Tinghui, PAN Xiao, TIAN Yu. Image Segmentation Method Based on Improved Fuzzy C-means Clustering and Otsu Maximum Variance[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 68 -73 .