Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (6): 24-32.doi: 10.16088/j.issn.1001-6600.2020102902

Previous Articles     Next Articles

Forecasting Method of Highway Freight Volume Based on GC-rBPNN Model during COVID-19 Epidemic

TIAN Sheng1*, LI Chengwei1, HUANG Wei2, WANG Lei2   

  1. 1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou Guangdong 510640, China;
    2. Guangzhou Transportation Design & Research Institute Co., Ltd., Guangzhou Guangdong 511430, China
  • Received:2020-10-29 Revised:2020-12-13 Online:2021-11-25 Published:2021-12-08

Abstract: Under the COVID-19 epidemic situation, the volume of road freight has declined significantly, and road operations have changed complexly. It is urgent to scientifically predict the volume of road freight. Through gray correlation analysis, the main factors affecting road freight volume during the epidemic period are determined, and a road freight volume forecast method based on the gray combination (GC)-revised BP neural network (rBPNN) model is constructed. The BP neural network is trained and tested based on the statistical data of China’s road freight volume from July 2017 to May 2020 as the original data, and the “correction coefficient” HM is introduced to modify the predicting result. Based on the data of the past five months during the epidemic, the gray combined model is used to predict the value of the main factors affecting the road freight volume in the next month, and the BP neural network is used to predict China’s road freight volume in June 2020. Compared the GC-rBPNN model with other prediction methods, the PE and MAPE of the GC-rBPNN model are 0.21% and 3.21%, respectively. The results show that the prediction accuracy of the GC-rBPNN model is higher, and the method has certain feasibility and effectiveness.

Key words: highway freight volume, epidemic situation, grey correlation degree, BP neural network, combined forecasting model

CLC Number: 

  • U492.313
[1] 王晖,贾元华. 交通量与经济量弹性关系的系统分析[J]. 交通运输系统工程与信息,2004(1):54-61. DOI:10.16097/j.cnki.1009-6744.2004.01.012.
[2] 赵鹏,李璐. 基于ARIMA模型的城市轨道交通进站量预测研究[J]. 重庆交通大学学报(自然科学版),2020,39(1):40-44. DOI:10.3969/j.issn.1674-0696.2020.01.07.
[3] XIAO M T,LI C. Fuzzy regression prediction and application based on multi-dimensional factors of freight volume[C]//2018 IOP Conference Series:Earth and Environmental Science. Bristol:IOP,2018,108(3):032071. DOI:10.1088/1755-1315/108/3/032071.
[4] 徐莉,薛锋. 基于GM(1,1)残差二次修正的铁路货运量预测[J]. 交通运输工程与信息学报,2019,17(2):44-50. DOI:10.3969/j.issn.1672-4747.2019.02.006.
[5] 李守军,李光宇,马小平. 基于马尔科夫滚动优化的锂电池寿命灰色预测研究[J]. 合肥工业大学学报(自然科学版),2019,42(6):763-769. DOI:10.3969/j.issn.1003-5060.2019.06.009.
[6] 徐森,崔舒为. 基于Softplus函数的双隐含层BP神经网络的公路客运量预测[J]. 南华大学学报(自然科学版), 2020, 34(1):88-92. DOI:10.19431/j.cnki.1673-0062.2020.01.014.
[7] GUO Z D,FU J Y. Prediction method of railway freight volume based on genetic algorithm improved general regression neural network[J]. Journal of Intelligent Systems,2018,27(2):291-302. DOI:10.1515/jisys-2016-0172.
[8] POLSON N G,SOKOLOV V O. Deep learning for short-term traffic flow prediction[J]. Transportation Research Part C: Emerging Technologies,2017,79:1-17. DOI:10.1016/j.trc.2017.02.024.
[9] YANG D,CHEN K R,YANG M N,et al. Urban rail transit passenger flow forecast based on LSTM with enhanced long-term features[J]. IET Intelligent Transport Systems,2019,13(10):1475-1482. DOI:10.1049/iet-its.2018.5511.
[10] YIN S,JIANG Y C,TIAN Y,et al. A data-driven fuzzy information granulation approach for freight volume forecasting[J]. IEEE Transactions on Industrial Electronics,2017,64(2):1447-1456. DOI:10.1109/TIE.2016.2613974.
[11] CHENG M L,SHI G J,HAN Y. An extended grey model GM(1,1,exp(bk)) and its application in Chinese civil air passenger volume prediction[J]. Journal of Systems Science and Information,2019,7(5):486-496. DOI:10.21078/JSSI-2019-486-11.
[12] ZHAO Y,FAN Z Z,ZHAO C. Combined forecasting model of water traffic accidents based on gray-BP neural network[C]//2019 4th International Conference on Intelligent Transportation Engineering (ICITE). Piscataway,NJ:IEEE,2019:34-38. DOI:10.1109/ICITE.2019.8880206.
[13] GUO Z Q,ZHAO X,CHEN Y X,et al. Short-term passenger flow forecast of urban rail transit based on GPR and KRR[J]. IET Intelligent Transport Systems,2019:1-9. DOI:10.1049/iet-its.2018.5530.
[14] 赵怀鑫,孙星星,徐倩倩,等.基于灰熵法的公路货运量和货物周转量关联因素分析[J].交通运输工程学报,2018,18(4):160-170. DOI:10.19818/j.cnki.1671-1637.2018.04.017.
[15] 谢超. 基于主成分分析和极限学习机的公路货运量预测研究[J]. 交通与运输(学术版),2018(1):64-67.
[16] DONG J Y,WANG S P. Max-min and min-max gray association degree-based method for multiattribute decision making[J]. Journal of Intelligent Systems,2015,24(4):525-531. DOI:10.1515/jisys-2014-0091.
[17] 郑丽霞,林芳,杨善朝. 学科领域高被引与高下载论文的灰色关联分析:以概率论与数理统计学科为例[J]. 广西师范大学学报(自然科学版),2018,36(4):76-83. DOI:10.16088/j.issn.1001-6600.2018.04.010.
[18] ZENG B,DUAN H M,ZHOU Y F. A new multivariable grey prediction model with structure compatibility[J]. Applied Mathematical Modelling,2019,75:385-397. DOI:10.1016/j.apm.2019.05.044.
[19] LV MM,WANG L,HOU Y L,et al. Mean shift tracker with grey prediction for visual object tracking[J]. Canadian Journal of Electrical and Computer Engineering,2018,41(4):172-178.
[20] 杨程,郑兰香,李春光. 基于灰色模型与三次样条插值的预测研究[J]. 湖北农业科学,2015,54(22):5729-5731. DOI:10.14088/j.cnki.issn0439-8114.2015.22.061.
[21] 许伦辉,陈凯勋. 基于改进萤火虫算法优化BP神经网络的路网速度分布预测[J]. 广西师范大学学报(自然科学版),2019,37(2):1-8. DOI:10.16088/j.issn.1001-6600.2019.02.001.
[22] WU J,LI Z B,ZHU L,et al. Optimized BP neural network for dissolved oxygen prediction[J]. IFAC-PapersOnLine, 2018,51(17):596-601. DOI:10.1016/j.ifacol.2018.08.132.
[23] YANG H,LI X Q,WU B. Scale forecast method for regional highway network based on BPNN-MOP[J]. Transportation Research Procedia,2017,25:3840-3854. DOI:10.1016/j.trpro.2017.05.284.
[1] LIU Xin, LUO Xiaoshu, ZHAO Shulin. Active Disturbance Rejection Control of Three-AxisStabilized Platform Based on BP Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 115-120.
[2] XU Lunhui, CHEN Kaixun. Prediction of Road Network Speed Distribution Based on BP Neural Network Optimization by Improved Firefly Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 1-8.
[3] ZHONG Haixin, QIU Senhui, LUO Xiaoshu, TANG Tang, YANG Li, ZHAO Shuai. Study of Applying BP Neural Network with Inertia Term Self-tuningto Attitude Stability of Quadrotor Unmanned Aerial Vehicle [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 24-31.
[4] PENG Xinjian, WENG Xiaoxiong. Bus Travel Time Prediction Based on BP Neural Network Optimized by Firefly Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(1): 28-36.
[5] CHEN Jin, LUO Xiao-shu. Extraction and Recognition of Cell Image Feature Basedon Wavelet Transform and Invasive Weed Optimization [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(2): 22-28.
[6] HUANG Jing, LUO Xiao-shu. Application of BP Neural Network in Ice Accretion over Transmission Line [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(4): 25-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HU Jinming, WEI Duqu. Hybrid Projective Synchronization of Fractional-order PMSM with Different Orders[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 1 -8 .
[2] WU Kangkang, ZHOU Peng, LU Ye, JIANG Dan, YAN Jianghong, QIAN Zhengcheng, GONG Chuang. FIR Equalizer Based on Mini-batch Gradient Descent Method[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 9 -20 .
[3] LIU Dong, ZHOU Li, ZHENG Xiaoliang. A Very Short-term Electric Load Forecasting Based on SA-DBN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 21 -33 .
[4] ZHANG Weibin, WU Jun, YI Jianbing. Research on Feature Fusion Controlled Items Detection Algorithm Based on RFB Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 34 -46 .
[5] WANG Jinyan, HU Chun, GAO Jian. An OBDD Construction Method for Knowledge Compilation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 47 -54 .
[6] LU Miao, HE Dengxu, QU Liangdong. Grey Wolf Optimization Algorithm Based on Elite Learning for Nonlinear Parameters[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 55 -67 .
[7] LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68 -78 .
[8] LI Songtao, LI Qunhong, ZHANG Wen. Co-dimension-two Grazing Bifurcation and Chaos Control of Three-degree-of-freedom Vibro-impact Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 79 -92 .
[9] ZHAO Hongtao, LIU Zhiwei. Decompositions of λ-fold Complete Bipartite 3-uniform Hypergraphs λK(3)n,n into Hypergraph Triangular Bipyramid[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 93 -98 .
[10] LI Meng, CAO Qingxian, HU Baoqing. Spatial-temporal Analysis of Continental Coastline Migration from 1960 to 2018 in Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 99 -108 .