Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (6): 131-144.doi: 10.16088/j.issn.1001-6600.2021101201
Previous Articles Next Articles
CHEN Jiarui, LING Lin, JIANG Guirong*
CLC Number:
[1] MCGEER T. Passive dynamic walking[J]. International Journal of Robotics Research, 1990, 9(2): 62-82. [2] SAFARTOOBI M, DARDEL M, DANIALI H M. Gait cycles of passive walking biped robot model with flexible legs[J]. Mechanism and Machine Theory, 2021, 159: 104292. [3] ZNEGUI W, GRITLI H, BELGHITH S. A new Poincaré map for investigating the complex walking behavior of the compass-gait biped robot[J]. Applied Mathematical Modelling, 2021, 94: 534-557. [4] 刘宋, 杨鑫.平面双足机器人建模与仿真研究[J].计算机仿真, 2020, 37(8): 281-285, 352. [5] 吉巧丽, 钱志辉, 任雷, 等.基于遗传算法的双足机器人足踝蹬地参数优化[J].农业机械学报, 2020, 51(S1): 584-591. [6] 钟浩然, 李新宇, 高亮, 等.适应非平整地面的双足机器人柔顺步态优化方法[J].华中科技大学学报(自然科学版), 2021, 49(7): 97-102. [7] NODA S, SUGAI F, KOJIMA K, et al. Semi-passive walk and active walk by one bipedal robot: mechanism, control and parameter identification[J]. International Journal of Humanoid Robotics, 2020, 17(2): 2050012. [8] 吴青青, 张奇志, 周亚丽.变刚度双足机器人半被动行走控制研究[J].系统仿真学报, 2020, 32(8): 1588-1597. [9] DENG K, ZHAO M G, XU W L. Level-ground walking for a bipedal robot with a torso via hip series elastic actuators and its gait bifurcation control[J]. Robotics and Autonomous Systems, 2016, 79: 58-71. [10] KERIMOLU D, MORGÜL Ö, SARANLI U. Stability of a compass gait walking model with series elastic ankle actuation[C]// 2015 International Conference on Advanced Robotics (ICAR). Piscataway: IEEE, 2015: 351-356. [11] KUO A D. Energetics of actively powered locomotion using the simplest walking model[J]. Journal of Biomechanical Engineering, 2002, 124(1): 113-120. [12] 周亚丽, 张奇志.基于脉冲推力的半被动双足机器人无模型神经网络控制[J].计算机应用研究, 2018, 35(1): 56-61. [13] DONG E Z, WANG D D, TONG J G, et al. A stable gait planning method of biped robot based on ankle motion smooth fitting[J]. International Journal of Control Automation and Systems, 2018, 16(1): 284-294. [14] VATANKHAH M, KOBRAVI H R, RITTER A. Intermittent control model for ascending stair biped robot using a stable limit cycle model[J]. Robotics and Autonomous Systems, 2019, 121: 103255. [15] SHIH C L. Ascending and descending stairs for a biped robot[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 1999, 29(3): 255-268. [16] GONG L L, ZHAO R W, LIANG J Y, et al. Periodic motion generation for the impactless biped walking up slopes via genetic algorithm[J]. Natural Computing, 2020, 19(4): 743-755. [17] MANDAVA R K, VUNDAVILLI P R. Design and development of an adaptive-torque-based proportional-integral-derivative controller for a two-legged robot[J]. Soft Computing, 2021, 25(16): 10953-10968. [18] HAO M, CHEN K, FU C L. Effects of hip torque during step-to-step transition on center-of-mass dynamics during human walking examined with numerical simulation[J]. Journal of Biomechanics, 2019, 90: 33-39. [19] 李松涛, 李群宏, 张文.三自由度碰撞振动系统的余维二擦边分岔与混沌控制[J].广西师范大学学报(自然科学版), 2021, 39(4): 79-92. [20] YANG X B, YU J Y, GAO H J. An impulse control approach to spacecraft autonomous rendezvous based on genetic algorithms[J]. Neurocomputing, 2012, 77(1): 189-196. |
[1] | HUANG Wentao, GU Jieping, WANG Qinlong. Limit Cycles and Isochronous Centers of Three-dimensional Differential Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 104-126. |
[2] | SHAO Huiting, YANG Qigui. Complex Dynamics of a Six-dimensional Hyperchaotic System with Four Positive Lyapunov Exponents [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 433-444. |
[3] | XU Wangjun, CAO Jinde, WU Daiyong, SHEN Chuansheng. Stability of a Prey-predator Model with Migration and Allee Effects [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 103-115. |
[4] | RUAN Wenjing, YANG Qigui. Research on Complex Dynamics of a New Four-dimensional Hyperchaotic System with Finite and Infinite Isolated Singularities [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 173-181. |
[5] | LI Songtao, LI Qunhong, ZHANG Wen. Co-dimension-two Grazing Bifurcation and Chaos Control of Three-degree-of-freedom Vibro-impact Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 79-92. |
[6] | HUANG Chunxian, ZHOU Xiaoliang. Bifurcation Analysis of an SIRS Epidemic Model with Graded Cure and Incomplete Recovery Rates [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 74-81. |
[7] | ZHU Yaping, QU Guorong, FAN Jianghua. The Existence of Solutions for Quasi-variational Inequalities by Using the Fixed Point Index Approach [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 79-85. |
[8] | HE Dongping,HUANG Wentao ,WANG Qinlong. Limit Cycle Flutter and Chaostic Motion of Two-Dimensional Airfoil System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 87-95. |
[9] | HONG Lingling, YANG Qigui. Research on Complex Dynamics of a New 4D Hyperchaotic System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 96-105. |
[10] | HUANG Yanping, WEI Yuming. Multiple Solutions of Multiple-points Boundary Value Problem for a Class of Fractional Differential Equation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 41-49. |
[11] | PANG Yang,WEI Yuming,FENG Chunhua. Existence of Positive Solutions for a Class of Two-point BoundaryValue Problem of Fractional Differential Equations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(4): 68-75. |
[12] | YAN Rongjun, WEI Yuming, FENG Chunhua. Existence of Three Positive Solutions for Fractional Differential Equation ofBoundary Value Problem with p-Laplacian Operator and Delay [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 75-82. |
[13] | ZHANG Mei-yue. Some New Results for the Electron Beams Focusing System Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 38-44. |
[14] | LIU Jun-xian, PEI Qi-ming, QIN Zong-ding, JIANG Yu-ling. Study of the Lorenz Equations in a New Parameter Space [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 1-12. |
[15] | WANG Li-long, XUE Ze, ZHOU Jin-yang, TAN Hui-li, LI Hua-bing. Movement of Single Particle at the Bifurcation Pipe by Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 25-29. |
|