Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (5): 366-375.doi: 10.16088/j.issn.1001-6600.2021041801

Previous Articles     Next Articles

Research Progress of Forest Medicine Planting Pattern

LIANG Jiayu1,2,3, LIANG Yu1,2,3*, MA Jiangming1,2,3*   

  1. 1. Key Laboratory of Ecology and Environmental Protection of Rare and Endangered Animals and Plants (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), Guilin Guangxi 541006, China;
    3. Institute of Sustainable Development and Innovation, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2021-04-18 Revised:2021-06-12 Online:2022-09-25 Published:2022-10-18

Abstract: Forestry medicine planting refers to the planting mode which relies on the existing forest land resources and the ecological environment under the forest, so as to makes full use of the forest space by interplanting Chinese herbal medicines with low plant height and shade preference under the forest. Forestry medicine planting mode plays an active role in protecting forest resources and ecological environment, so the planting mode of interplanting Chinese herbal medicine under forest has become a popular choice for developing forest agriculture. This paper mainly expounds and summarizes: different forestry medicine planting models, influencing factors of forestry medicine planting, the related research progress of the relationship between gene and metabolite and metabolic pathway which is revealed by the analysis of metabolomics and transcriptomics data, in order to provide reference for the sustainable development of interplanting Chinese herbal medicines under forest and increasing the economic benefits of farmers who manage forest industry.

Key words: forestry medicine planting, Chinese herbal medicines, metabolome, transcriptome, sustainable development

CLC Number: 

  • S759.82
[1]韦鸿彬. 广西林下经济发展模式与对策探讨[J]. 中国高新技术企业, 2017(2): 3-4. DOI:10.13535/j.cnki.11-4406/n.2017.02.002.
[2]范晨昕. 林下经济生态文化建设初探[J]. 农业与技术, 2019, 39(23): 72-73. DOI:10.19754/j.nyyjs.20191215029.
[3]潘启龙, 戴海军, 王凌晖, 等. 林下套种中草药的栽培方法与技术[J]. 广东农业科学, 2011, 38(21): 50-53. DOI:10.16768/j.issn.1004-874x.2011.21.027.
[4]吴应齐, 吴大瑜, 王明月, 等. 毛竹覆盖-套种竹荪轮作模式经济效益和生态修复评价[J]. 南方林业科学, 2016, 44(3): 40-43, 48. DOI:10.16259/j.cnki.36-1342/s.2016.03.010.
[5]赵瑾璟, 汪海燕, 张红霄. 发展林下经济能否保护森林资源?: 基于江苏省的经验证据[J]. 中国林业经济, 2020(3): 79-82. DOI:10.13691/j.cnki.cn23-1539/f.2020.03.0022.
[6]张彩红. 可持续林业与森林生态平衡的关系[J]. 花卉, 2018(8): 178-179.
[7]林马马. 林下套种不同中草药对毛竹林产量的影响分析[J]. 黑龙江生态工程职业学院学报, 2016, 29(4): 23-24, 39. DOI:10.3969/j.issn.1674-6341.2016.04.011.
[8]严洪. 天然次生林下金线莲种植技术[J]. 林业勘察设计, 2019, 39(3): 52-54.
[9]郑燕,张宏勃. 对发展西安市长安区林下经济的思考[J]. 森林工程, 2012, 28(5): 99-101, 112. DOI:10.16270/j.cnki.slgc.2012.05.019.
[10]吴梦真, 任晓琴, 庞志蕊, 等. 乔草组合林地中不同种类草本植物的生长差异[J]. 天津农业科学, 2020, 26(7): 8-11. DOI:10.3969/j.issn.1006-6500.2020.07.003.
[11]孙静. 林下中草药种植技术探析[J]. 现代农业科技, 2020(16): 73.
[12]李树兴. 杨树林间复合种植模式和造林技术探究[J].南方农业, 2020, 14(32): 109-110. DOI:10.19415/j.cnki.1673-890x.2020.32.052.
[13]黄宗安, 陈鸿, 罗雪妹, 等. 龙眼茶林下套种桔梗的经济效益分析[J]. 绿色科技, 2020(23): 163-164. DOI:10.16663/j.cnki.lskj.2020.23.065.
[14]张剑斌, 温宝阳, 戴玉玮, 等. 银中杨短轮伐期纸浆林定向培育技术研究[J]. 防护林科技, 2007(1): 4-6, 10. DOI:10.13601/j.issn.1005-5215.2007.01.002.
[15]陈慧玲, 张新叶, 孙庐山, 等. 湖北省杨树林下药材种植技术及效益分析[J]. 湖北林业科技, 2015, 44(1): 9-12, 52.
[16]罗双林. 不同郁闭度和坡位对毛竹林下套种白及的影响[J]. 安徽林业科技, 2016, 42(3): 14-15.
[17]黄建辉. 不同郁闭度毛竹林冠下套种金花茶效果研究[J]. 现代农业科技, 2019(2): 94-95, 99.
[18]卢秀贞. 杉木林下套种草珊瑚试验研究[J].中国林副特产, 2018(3): 26-27, 30. DOI:10.13268/j.cnki.fbsic.2018. 03.008.
[19]李麒. 丘陵地区马尾松林下套种丹参研究[D]. 长沙: 中南林业科技大学, 2020.
[20]李彬彬, 张连翔, 步兆东. 经济林下间作甘草和黄芩的研究[J]. 辽宁林业科技, 2014(2): 29-31.
[21]张军莲, 赵晓玲, 周丹, 等. 杜仲林下复合种植钩藤效果初探[J]. 湖北林业科技, 2016, 45(4): 37-39.
[22]刘正兰. 金线莲林下仿野生栽培技术[J]. 现代园艺, 2019(20): 41-42. DOI:10.14051/j.cnki.xdyy.2019.20.024.
[23]周进军. 杉木林下天麻种植技术[J]. 吉林农业, 2019(4): 92. DOI:10.14025/j.cnki.jlny.2019.04.046.
[24]王利平, 朱炜, 沈泉, 等. 毛竹林下套种三叶崖爬藤的研究[J]. 浙江林业科技, 2016, 36(3): 73-76.
[25]陈英之, 李良波, 甘凤琼, 等. 马尾松林下种植五指毛桃的生长评价[J]. 湖南农业科学, 2020(9): 60-64. DOI:10.16498/j.cnki.hnnykx.2020.009.016.
[26]郑林森. 杉木林下多花黄精种植试验研究[J]. 林业勘察设计, 2012(1): 155-157.
[27]LI W C, TIAN X L, SHENG H Y, et al. Response of bacterial compositions to soil biochemical properties under mulching-intensive management in a Phyllostachys edulis forest[J]. Applied Soil Ecology, 2020, 150: 103436. DOI:10.1016/j.apsoil.2019.103436.
[28]黄云鹏, 范繁荣, 王邦富, 等. 4种不同林分类型对多花黄精生长的影响[J]. 西部林业科学, 2016, 45(5): 132-135. DOI:10.16473/j.cnki.xblykx1972.2016.05.026.
[29]陈玉鲁. 毛竹林下种植防城金花茶的生长效应研究[J]. 林业勘察设计, 2018, 38(1): 39-42.
[30]李志坚. 毛竹及阔叶树林冠下套种金线莲生长效果分析[J]. 河北林业科技, 2016(3): 35-37. DOI:10.16449/j.cnki.issn1002-3356.2016.03.014.
[31]陆宏宙. 马尾松林下种植金花茶可行性研究: 以广西国有七坡林场为例[D]. 长沙: 中南林业科技大学, 2016.
[32]贾晓光. 北方地区杨树不同营林模式对土壤理化性质的影响[J]. 防护林科技, 2019(11): 35-37. DOI:10.13601/j.issn.1005-5215.2019.11.013.
[33]陈群领. 杨树林下芍药栽培技术[J]. 河北林业科技, 2015(2): 108-109. DOI:10.16449/j.cnki.issn1002-3356.2015.02.040.
[34]杨飞, 郑智礼, 杨延青, 等. 杨树林分密度研究综述[J]. 山西林业科技, 2019, 48(2): 36-39.
[35]高平珍, 陈双林, 郭子武, 等. 毛竹林下苦参和决明幼苗生长和生物量分配的立竹密度效应[J]. 生态学杂志, 2018, 37(3): 861-868. DOI:10.13292/j.1000-4890.201803.014.
[36]杨文斌, 王晶莹, 王晓江, 等.科尔沁沙地杨树固沙林密度、配置与林分生长过程初步研究[J]. 北京林业大学学报, 2005, 27(4): 33-38.
[37]刘月, 王君, 杨雨春, 等. 不同林分密度胡桃楸胸径、树高、材积与冠幅关系[J]. 森林工程, 2021, 37(3): 28-35. DOI:10.16270/j.cnki.slgc.2021.03.004.
[38]王邦富, 王琦, 黄云鹏, 等. 不同林分郁闭度对竹柏生长的影响[J]. 中国林副特产, 2020(6): 28-29. DOI:10.13268/j.cnki.fbsci.2020.06.011.
[39]何碧珠, 邹双全, 刘江枫, 等. 光照强度与栽培模式对金线莲生长及品质影响[J]. 中国现代中药, 2015, 17(12): 1292-1295. DOI:10.13313/j.issn.1673-4890.2015.12.015.
[40]付晓芳, 钟幼雄, 刘顺春, 等. 不同光照强度对林下栽培三叶青块根产量及总黄酮含量的影响[J]. 安徽农业科学, 2016, 44(19): 117-118. DOI:10.13989/j.cnki.0517-6611.2016.19.038.
[41]ZHANG J J, ZHU L, ZHANG X, et al. Photosynthetic performance and growth responses of Liriope muscari (Decne.) L.H. Bailey (Asparagaceae) planted within poplar forests having different canopy densities[J]. BMC Ecology, 2020, 20(1): 25. DOI:10.1186/s12898-020-00294-7.
[42]罗也, 李奎友, 李雪萌, 等. 不同因素对林下参保存率的影响[J]. 吉林林业科技, 2020, 49(6): 25-29. DOI:10.16115/j.cnki.issn.1005-7129.2020.06.007.
[43]ZHANG C S, XIE G D, FAN S H, et al. Variation in vegetation structure and soil properties, and the relation between understory plants and environmental variables under different Phyllostachys pubescens forests in southeastern China[J]. Environmental Management, 2010, 45(4): 779-792. DOI:10.1007/s00267-010-9429-y.
[44]刘丽, 陈双林. 有机材料林地覆盖对雷竹林生态系统的负面影响研究综述[J]. 广西植物, 2009, 29(3): 327-330.
[45]卞方圆, 钟哲科, 张小平, 等. 竹林土壤微生物多样性及其作用研究进展[J]. 竹子学报, 2017, 36(3): 83-89. DOI:10.19560/j.cnki.issn1000-6567.2017.03.014.
[46]王波, 李琴, 朱炜, 等. 毛竹林覆盖经营对土壤养分含量、酶活性及微生物生物量的影响[J]. 林业科学, 2019, 55(1): 110-118. DOI:10.11707/j.1001-7488.20190113.
[47]ZHANG X P, GAO G B, WU Z Z, et al. Responses of soil nutrients and microbial communities to intercropping medicinal plants in moso bamboo plantations in subtropical China[J]. Environmental Science and Pollution Research, 2020, 27(2): 2301-2310. DOI:10.1007/s11356-019-06750-2.
[48]王楠, 高静, 万修福, 等. 林下种植重楼和珠子参根际土壤与微生物量碳(C), 氮(N), 磷(P)生态化学计量特征研究[J]. 中国中药杂志, 2020, 45(18): 4373-4381. DOI:10.19540/j.cnki.cjcmm.20200627.103.
[49]苏海兰, 郑梅霞, 朱育菁, 等. 不同种植模式七叶一枝花土壤芽胞杆菌多样性研究[J]. 福建农业学报, 2019, 34(8): 974-984. DOI:10.19303/j.issn.1008-0384.2019.08.016.
[50]彭晓邦. 商洛核桃-丹参复合生态系统中丹参根际土壤微生物数量特征与酶活性研究[J]. 陕西农业科学, 2016, 62(3): 17-21.
[51]彭晓邦. 商洛核桃-桔梗复合生态系统中桔梗根际土壤微生物数量特征与酶活性研究[J]. 浙江农业科学, 2015, 56(12): 2010-2012, 2014. DOI:10.16178/j.issn.0528-9017.20151229.
[52]郭凤丹, 王兴军, 侯蕾, 等. 植物代谢组学研究进展[J]. 山东农业科学, 2017, 49(12): 154-162. DOI:10.14083/j.issn.1001-4942.2017.12.035.
[53]王斌, 张腾霄, 赵倩, 等. 植物代谢组学在药用植物中的应用进展[J]. 中华中医药学刊, 2021, 39(5): 28-31. DOI:10.13193/j.issn.1673-7717.2021.05.008.
[54]XIN T Y, ZHANG Y, PU X D, et al. Trends in herbgenomics[J]. Sciences China Life Sciences, 2019, 62(3): 288-308. DOI:10.1007/s11427-018-9352-7.
[55]李丽丽, 李月, 卢恒, 等. 基于液相色谱-质谱法的不同花期金银花代谢组学分析[J]. 分析测试学报, 2020, 39(12): 1501-1507. DOI:10.3969/j.issn.1004-4957.2020.12.010.
[56]时羽杰, 邬晓勇, 糜加轩, 等. 核桃内种皮苦涩味品质代谢组学分析[J]. 西北农林科技大学学报(自然科学版), 2021, 49(6): 54-64. DOI:10.13207/j.cnki.jnwafu.2021.06.006.
[57]TONG R, ZHOU B Z, CAO Y H, et al. Metabolic profiles of moso bamboo in response to drought stress in a field investigation[J]. Science of The Total Environment, 2020, 720: 137722. DOI:10.1016/j.scitotenv.2020.137722.
[58]杨琳琳, 柴建新, 陈强, 等. 基于LC-MS代谢组学技术的不同采收期黄芩叶化学成分比较研究[J]. 山西医科大学学报, 2020, 51(11): 1244-1254. DOI:10.13753/j.issn.1007-6611.2020.11.018.
[59]韩正洲, 杨勇, 贾红梅, 等. 基于植物代谢组学的栽培型与野生型野菊花的化学成分比较及定量分析[J]. 药物分析杂志, 2017, 37(7): 1196-1206. DOI:10.16155/j.0254-1793.2017.07.06.
[60]BAI H Y, BAO F, FAN X R, et al. Metabolomics study of different parts of licorice from different geographical origins and their anti-inflammatory activities[J]. Journal of Separation Science, 2020, 43(8): 1593-1602. DOI:10.1002/jssc.201901013.
[61]李瑞姿. 基于不同栽培阶段金线莲的代谢组学分析[D]. 福州: 福建农林大学, 2018.
[62]YAN Y, SHEN C X, PEI X P, et al. Compare the chemical profiling of Ziziphi Spinosae Semen and Ziziphi Mauritianae Semen using untargeted metabolomics[J]. Journal of Food Composition and Analysis, 2020, 94: 103635. DOI:10.1016/j.jfca.2020.103635.
[63]周改莲, 黄盼, 谢雪婷, 等. 广西莪术关键采收月份挥发性成分的差异及动态变化研究[J/OL]. 广西植物: 1-11. [2022-03-17]. http://kns.cnki.net/kcms/detail/45.1134.Q.20210114.1003.002.html.
[64]朱海林. 基于NMR和UPLC-QTOF-MS/MS技术的林下山参化学成分研究[D]. 长春: 吉林大学, 2017.
[65]LIU J, LIU Y, WU K X, et al. Comparative analysis of metabolite profiles from Panax herbs in specific tissues and cultivation conditions reveals the strategy of accumulation[J]. Journal of Pharmaceutical and Biomedical Analysis, 2020, 188: 113368. DOI:10.1016/j.jpba.2020.113368.
[66]王伟东, 常庆瑞, 王玉娜. 冬小麦叶片花青素相对含量高光谱监测[J]. 麦类作物学报, 2020, 40(6): 754-761. DOI:10.7606/j.issn.1009-1041.2020.06.14.
[67]邱连建, 索彩仙, 潘礼业, 等. 基于多元统计分析的金银花、山银花及川银花质量评价研究[J]. 广东药科大学学报, 2020, 36(5): 620-626. DOI:10.16809/j.cnki.2096-3653.2020052006.
[68]李璐, 李丹凤. 胖大海中氨基酸的含量测定及多元化统计分析[J].食品科技, 2020, 45(6): 352-360. DOI:10.13684/j.cnki.spkj.2020.06.061.
[69]马留纯, 马生军, 朱金芳, 等. 新疆紫草的HPLC指纹图谱建立、化学模式识别分析及其含量测定[J]. 中国药房, 2020, 31(14): 1732-1738. DOI:10.6039/j.issn.1001-0408.2020.14.13.
[70]刘贤青, 董学奎, 罗杰. 基于连锁与关联分析的植物代谢组学研究进展[J]. 生命科学, 2015, 27(8): 986-994. DOI:10.13376/j.cbls/2015137.
[71]蒋费涛, 王书平, 祁俊生, 等. 转录组学技术及其在植物系统学上的研究进展[J]. 现代盐化工, 2020, 47(4): 14-17. DOI:10.19465/j.cnki.2095-9710.2020.04.007.
[72]李慧, 马德志, 姜明, 等. 传统药用植物转录组研究进展[J]. 中医药信息, 2018, 35(6): 114-120. DOI:10.19656/ j.cnki.1002-2406.180192.
[73]倪知游, 梁东, 高帆, 等. 植物响应干旱的转录组学研究进展[J]. 分子植物育种, 2018, 16(8): 2460-2465. DOI:10.13271/j.mpb.016.002460.
[74]李舒欣. 转录组学解析二马牙型与长脖型林下参表型的研究[D]. 北京: 中国农业科学院, 2020.
[75]范航. 发育中的林下参萜类代谢的转录组学解析[D]. 北京: 北京林业大学, 2019.
[76]林海燕, 曾超珍, 谭斌, 等. 转录组学技术在茶树抗逆性的研究进展[J]. 分子植物育种, 2019, 17(3): 803-810. DOI:10.13271/j.mpb.017.000803.
[77]李以格, 杨杭, 姜琪梦, 等. 珍稀药用植物铁皮石斛的组学及功能基因研究进展[J]. 生命科学, 2019, 31(9): 959-967. DOI:10.13376/j.cbls.2019118.
[78]詹忠根. 铁皮石斛基因组学、转录组学与功能基因研究进展[J].中草药, 2019, 50(16): 3979-3989. DOI:10.7501/j.issn.0253-2670.2019.16.034.
[79]郑玉莹, 谢文刚. 基于转录组测序的牧草分子标记开发研究进展[J]. 中国草地学报, 2020, 42(1): 154-162. DOI:10.16742/j.zgcdxb.20190150.
[80]徐惠龙, 孟静, 范世明, 等. 基于转录组的多花黄精与长梗黄精代谢途径分析[J]. 中药材, 2020, 43(11): 2663-2668. DOI:10.13863/j.issn1001-4454.2020.11.010.
[81]SU H, ZHANG X Y, HE Y Q, et al. Transcriptomic analysis reveals the molecular adaptation of three major secondary metabolic pathways to multiple macronutrient starvation in tea (Camellia sinensis)[J]. Genes, 2020, 11(3): 241. DOI:10.3390/genes11030241.
[82]WANG Y, LIU X Q, SU H, et al. The regulatory mechanism of chilling-induced dormancy transition from endo-dormancy to non-dormancy in Polygonatum kingianum Coll. et Hemsl rhizome bud[J]. Plant Molecular Biology, 2019, 99(3): 205-217. DOI:10.1007/s11103-018-0812-z.
[83]HE L, FU S H, XU Z C, et al. Hybrid sequencing of full-length cDNA transcripts of stems and leaves in Dendrobium officinale[J]. Genes, 2017, 8(10): 257. DOI:10.3390/genes8100257.
[84]DU G, GONG H Y, FANG K N, et al. Diterpene synthases facilitating production of the kaurane skeleton of eriocalyxin B in the medicinal plant Isodon eriocalyx[J]. Phytochemistry, 2019, 158: 96-102. DOI:10.1016/j.phytochem.2018.11.015.
[85]ZHANG T T, LI M, ZHAN Y G, et al. Dataset of full-length transcriptome assembly and annotation of apocynum venetum using pacbio sequel II[J]. Data in Brief, 2020, 33: 106494. DOI:10.1016/j.dib.2020.106494.
[86]CHEN J, ZHU F Y, LIU L, et al. Integrative analyses of transcriptome and metabolome shed light on the regulation of secondary metabolites in pseudobulbs of two Bletilla striata (Thunb.) Reichb. f. varieties[J]. Journal of Applied Research on Medicinal and Aromatic Plants, 2021, 20: 100280. DOI:10.1016/j.jarmap.2020.100280.
[87]许秋健, 王松标, 马小卫, 等. 代谢组和转录组联合分析园艺植物生理机制研究进展[C]// 2019年全国热带作物学术年会. 西安:中国热带作物学会, 2019: 110-118.
[1] PU Ling, LI Hai-chao, PU Yu, JIANG Hong-xia. Principal Component Analysis of Trace Elements in 12 Commonly Used Chinese Herbal Medicines [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(4): 96-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Xilong, HAN Meng, CHEN Zhiqiang, WU Hongxin, LI Muhang. Survey of Ensemble Classification Methods for Complex Data Stream[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 1 -21 .
[2] TONG Lingchen, LI Qiang, YUE Pengpeng. Research Progress and Prospects of Karst Soil Organic Carbon Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 22 -34 .
[3] TIE Jun, LONG Juanjuan, ZHENG Lu, NIU Yue, SONG Yanlin. Tomato Leaf Disease Recognition Model Based on SK-EfficientNet[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 104 -114 .
[4] WENG Ye, SHAO Desheng, GAN Shu. Principal Component Liu Estimation Method of the Equation    Constrained Ⅲ-Conditioned Least Squares[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 115 -125 .
[5] QIN Chengfu, MO Fenmei. Structure ofC3-and C4-Critical Graphs[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 145 -153 .
[6] HE Qing, LIU Jian, WEI Lianfu. Single-Photon Detectors as the Physical Limit Detections of Weak Electromagnetic Signals[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 1 -23 .
[7] TIAN Ruiqian, SONG Shuxiang, LIU Zhenyu, CEN Mingcan, JIANG Pinqun, CAI Chaobo. Research Progress of Successive Approximation Register Analog-to-Digital Converter[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 24 -35 .
[8] ZHANG Shichao, LI Jiaye. Knowledge Matrix Representation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 36 -48 .
[9] LIANG Yuting, LUO Yuling, ZHANG Shunsheng. Review on Chaotic Image Encryption Based on Compressed Sensing[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 49 -58 .
[10] HAO Yaru, DONG Li, XU Ke, LI Xianxian. Interpretability of Pre-trained Language Models: A Survey[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 59 -71 .