Journal of Guangxi Normal University(Natural Science Edition) ›› 2019, Vol. 37 ›› Issue (3): 87-95.doi: 10.16088/j.issn.1001-6600.2019.03.010
Previous Articles Next Articles
HE Dongping1,HUANG Wentao 2*,WANG Qinlong1
CLC Number:
[1] 蔡铭.强非线性颤振分析方法研究[D].广州:中山大学,2004. [2] 陈衍茂,刘济科,孟光.二元机翼非线性颤振系统的若干分析方法[J].振动与冲击,2011,30(3): 129-134. [3] 刘济科,张宪民,赵令诚,等.不可压气流中二元机翼颤振的分岔点研究[J].固体力学学报,1999,20(4): 315-319. [4] 郝淑英,刘海英,张琪昌.立方非线性机翼非零平衡点极限环颤振的研究[J].天津理工大学学报,2007,23(2): 1-4. [5] 郑国勇.不可压缩流中机翼颤振稳定性研究[J].力学季刊,2010,31(2): 207-212. [6] LEE B H K, LIU L, CHUNG K W. Airfoil motion in subsonic flow with strong cubic nonlinear restoring forces[J]. Journal of Sound and Vibration, 2005, 281(3): 699-717. DOI:10.1016/j.jsv.2004.01.034. [7] 刘菲.非线性气动弹性系统的分叉分析[D].成都:西南交通大学,2007. [8] 郑国勇,杨翊仁.超音速流中结构非线性二元机翼的复杂响应研究[J].振动与冲击,2007,26(12): 96-100. [9] ZHENG Guoyong, YANG Yiren. Chaotic motions and limit cycle flutter of two-dimensional wing in supersonic flow[J]. Acta Mechanica Solida Sinica, 2008, 21(5): 441-448. DOI:10.1007/s10338-008-0853-y. [10]COLLER B D, CHRAMA P A. Structural nonlinearities and the nature of the classic flutter instability[J]. Journal of Sound and Vibration, 2004, 277(4): 711-739. DOI:10.1016/j.jsv.2003.09.017. [11]SHAHRZAD P, MAHZOON M. Limit cycle flutter of airfoils in steady and unsteady flows[J]. Journal of Sound and Vibration, 2002, 256(2): 213-225. DOI:10.1006/jsvi.2001.4113. [12]ABDELKEFI A, RUI V, NAYFEH A H,et al.An analytical and experimental investigation into limit-cycle oscillations of an aeroelastic system[J].Nonlinear Dynamics, 2013, 71(1-2): 159-173. DOI: 10.1007/s11071-012-0648-z. [13]CAI Ming, LIU Weifei, LIU Jike. Bifurcation and chaos of airfoil with multiple strong nonlinearities[J].Applied Mathematics and Mechanics, 2013, 34(5): 627-636. DOI:10.1007/s10483-013-1696-x. [14]CHEN Yanmao, LIU Jike. On the limit cycles of aeroelastic systems with quadratic nonlinearities [J].Structural Engineering and Mechanics, 2008, 30(30): 67-76. DOI:10.12989/sem.2008.30.1.067. [15]马知恩,周义仓.常微分方程定性与稳定性方法[M]. 北京:科学出版社,2001:244-248. [16]张琪昌.分叉与混沌理论及应用[M].天津:天津大学出版社,2005:58-61. [17]LIU Yirong, LI Jibin, HUANG Wentao. Planar dynamical systems: selected classical problems[M]. Beijing: Science Press, 2014: 69-78. [18]蔡燧林,钱祥征.常微分方程定性理论引论[M].北京:高等教育出版社,1994:18-29. [19]张锦炎.常微分方程几何理论与分支问题[M].北京:北京大学出版社,1981:207-208. |
[1] | ZHENG Tao, ZHOU Xinran, ZHANG Long. Global Asymptotic Stability of Predator-Competition-Cooperative Hybrid Population Models of Three Species [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 64-70. |
[2] | ZHANG Yijin. Random Dynamics for Stochastic Delay Lattice Systems in Xρ Space [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 106-110. |
[3] | MIAO Xinyan, ZHANG Long, LUO Yantao, PAN Lijun. Study on a Class of Alternative Competition-Cooperation Hybrid Population Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 25-31. |
[4] | HUANG Kaijiao, XIAO Feiyan. A Stochastic Predator-prey System with Beddington-DeAngelis Functional Response [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 32-40. |
[5] | HUANG Yanping, WEI Yuming. Multiple Solutions of Multiple-points Boundary Value Problem for a Class of Fractional Differential Equation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 41-49. |
[6] | HUANG Rongli, LI Changyou, WANG Minqing. Bernstein's Theorem for a Class of Ordinary Differential Equations Ⅱ [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 50-55. |
[7] | FENG Jinming,LI Zunxian. Stability Analysis of a Class of Epidemic Model with Diffusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 63-68. |
[8] | LUO Yantao, ZHANG Long, TENG Zhidong. Permanence of an Almost Periodic Predator-prey System withIntermit-tent Dispersal and Dispersal Delays between Patches [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 50-57. |
[9] | HUANG Kaijiao, XIAO Feiyan. A Stochastic Predator-prey System with Lévy Jumps [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 66-72. |
[10] | YAN Rongjun, WEI Yuming, FENG Chunhua. Existence of Three Positive Solutions for Fractional Differential Equation ofBoundary Value Problem with p-Laplacian Operator and Delay [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 75-82. |
[11] | HAN Caihong, LI Lüe, HUANG Lili. Global Asymptotic Stability of a Class of Difference Equations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(1): 53-57. |
[12] | YANG Kun, LIN Jiao, JIANG Gui-rong. Dynamics Analysis of a Stochastic SIS Epidemic Model with Birth Pulses [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 81-86. |
[13] | HAN Cai-hong, LI Lüe, PANG Lin-na, HOU Xin-xin. Global Attractivity of the Max-Type Difference Equation xn=max${\frac{1}{x_{n-k}^{\alpha}},\frac{A_n}{x^{\beta}_{n-k-2}}}$ [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(3): 71-74. |
[14] | WEI Bao-jun, ZHANG Wu-jun, SHI Jin-e. A Weighted Norm Estimates Based on Finite Volume Method for Two-point Boundary Value Problem [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(3): 75-78. |
[15] | ZHANG Mei-yue. Some New Results for the Electron Beams Focusing System Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 38-44. |
|