Journal of Guangxi Normal University(Natural Science Edition) ›› 2019, Vol. 37 ›› Issue (2): 15-26.doi: 10.16088/j.issn.1001-6600.2019.02.003
Previous Articles Next Articles
ZHANG Lisheng*, ZHANG Zhiyong, MA Kaihua, LI Guofang
CLC Number:
[1] CAHN J W. On spinodal decomposition[J]. Acta Metall,1961,9(3):795-501. [2] CAHN J W,HILLIARD J E. Free energy of a non-uniform system I. Interfacial free energy[J]. J Chem Phys,1958,2(2):258-267. [3] 李德生,李清仪. Cahn-Hilliard方程的动力学稳定性[J]. 数学学报,2000,43(1):127-134. [4] 曹保胜,何洋洋,董斌. 纳米尺度下体系自由能对扩散模型的影响[J]. 材料导报,2009,23(11):113-116. [5] GOLOVIN A A,NEPOMNYASHCHY A A,DAVIS S H,et al. Convective Cahn-Hilliard models:from coarsening to roughening[J]. Phys Rev Lett,2001,86(8):1550-1553. [6] 罗勇,欧阳文斌,杨其,等. 振荡剪切场下PS/PVME共混物的相分离动力学研究[J]. 高分子学报,2006,4(4):557-563. [7] 赵才地. 非线性Cahn-Hilliard方程的行波解[J]. 武汉科技大学学报(自然科学版),2006,29(2):215-216. [8] GUO Xiulan,LI Kaitai,YANG Shouzhi. The global attractor for a sort of fourth order nonlinear parabolic equations[J]. Mathematica Applicata,2002,15(3):1-7. [9] 张正丽,张强. 一类Cahn-Hilliard方程的定态分歧[J]. 四川大学学报(自然科学版),2011,48(4):729-732. [10] 曹保胜,张志鹏,雷明凯. 二元非均匀体系非线性动力学扩散模型的相关性[J]. 金属学报,2008,44:281. [11] SAVINA T V,GOLOVIN A A,DAVIS S H,et al. Faceting of a growing crystal surface by surface diffusion[J]. Phys Rev E,2003,67:021606. [12] MIKHAIL K. Long-wave model for strongly anisotropic growth of a crystal step[J]. Phys Rev E,2013,88:022402. [13] 梁宏,柴振华,施保昌. 分叉微通道内液滴动力学行为的格子Boltzmann 方法模拟[J]. 物理学报,2016,65(20):204701. [14] 上官勇刚,吴远志,陈锋,等. 制备方法对聚合物共混物相分离与黏弹弛豫的影响[J]. 中国科学:化学,2011,41(2):391-397. [15] 黄锐. Cahn-Hilliard方程的径向对称稳态解[D]. 长春:吉林大学,2004. [16] 张铁. Cahn-Hilliard方程有限元分析[J]. 计算数学,2006,28(3):281-292. [17] JELI$\acute{C}$ A,ILG P,ÖTTINGER H C. Bridging length and time scales in sheared demixing systems:From the Cahn-Hilliard to the Doi-Ohta model[J]. Phys Rev E,2010,81:011131. [18] MITLIN V. On the μ-transform:Applications to the Cahn-Hilliard equation[J]. Phys Lett A,2006,58:142-148. [19] LI Juan,SUN Zhizhong,ZHAO Xuan. A three level linearized compact difference scheme for the Cahn-Hilliard equation[J]. Science China:Mathematics,2012,55(4):805-826. [20] GRUNAU D,CHEN S,EGGERT K A. Lattice Boltzmann model for multiphase fluid flows[J]. Phys Fluids,1993,A5:2557. [21] 许爱国,张广财,甘延标. 相分离过程的离散Boltzmnn方法研究进展[J]. 力学与实践,2016,38(4):361-374. [22] LAI H L,MA C F. Lattice Boltzmann method for the generalized Kuramoto-Sivashinsky equation[J]. Physica A,2009,388:1405-1412. [23] CHAI Z H,HE N Z,GUO Z L,et al. Lattice Boltzmann model for high-order nonlinear partial differential equations[J]. Phys Rev E,2018,97:013304. [24] McNAMARA G,ZANETTI G. Use of the Boltzmann equation to simulation lattice gas automata[J]. Phys Rev Lett,1988,61(20/22):2332-2335. [25] CHEN S Y,CHEN H D,MARITINEZ D,et al. Lattice Boltzmann model simulation of magneto hydynamics[J]. Phys Rev Lett,1991,67(27):3776-3780. [26] 王勇. 格子Boltzmann方法在热声领域的应用及热声谐振管可视化实验研究[D]. 西安:西安交通大学,2009. [27] 陈杰,钱跃竑. 热格子Boltzmann方法分析及应用[J]. 上海大学学报(自然科学版),2012,18(5):489-495. [28] 邓敏艺,刘慕仁,何云,等. 基于九速四方格子模型的二维对流扩散方程格子Boltzmann 方法模拟[J]. 计算物理,2000,17(1/2):161-165. [29] QIAN Y H,SUCCI S,ORSZAG S A,Recent advances in Lattice Boltzmann computing[J]. Annual Reviews of Computational Physics,1995,3:195-242. [30] 史秀波. 用于波动方程的格子Boltzmann方法及数值模拟研究[D]. 长春:吉林大学,2010. [31] CHAI Z H,SHI B C,ZHENG L. A unified Lattice Boltzmann model for some nonlinear partial differential equations[J]. Chaos,Solitons and Fractals,2008,36:874-882. [32] BÖSCH F,KARLIN I V. Exact Lattice Boltzmann equation[J]. Phys Rev Lett,2013,111:090601. [33] XU A G,ZHANG G C,GAN Y B,et al. Lattice Boltzmann modeling and simulation of compressible flows[J]. Front Phys,2012,7(5):582. [34] MENDOZA M,BOGHOSIAN B M,HERRMANN H J,et al,Fast Lattice Boltzmann solver for relativistic hydrodynamics[J]. Phys Rev Lett,2010,105(1):014502. [35] LIN Chuandong,LUO Kaihong,FEI Linlin,et al. A multi-component discrete Boltzmann model for nonequilibrium reactive flows[J]. Sci Rep,2017,7:14580. [36] LIANG H,SHI B C,GUO Z L,et al. Phase-field-based multiple-relaxation-time Lattice Boltzmann model for incompressible multiphase flows[J]. Phys Rev E,2014,89:053320. [37] ZHENG Lin,ZHENG Song,ZHAI Qinglan. Lattice Boltzmann equation method for the Cahn-Hilliard equation[J]. Phys Rev E,2015,91:013309. [38] 许爱国,张广财,李英骏,等. 非平衡与多相复杂系统模拟研究:Lattice Boltzmann 动力学理论与应用[J]. 物理学进展,2014,24(3):136-167. |
[1] | LI Feiyu, WENG Xiaoxiong, YAO Shushen. Research on the Scaling Law Based on the Travel Time Interval of Passengers’ Group [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 1-9. |
[2] | LING Fengru, ZHANG Chaoying, CHEN Yanyan, QIN Zhangrong. A Unified Boundary Condition Based on the Halfway Bounce-back Scheme in Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 70-78. |
[3] | QIU Wen, YE Yong, ZHOU Sihao, WEN Binghai. Contact Angle in Micro Droplet Deformation Based on Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 27-37. |
[4] | WU Lei, YANG Li, LI Qishang, XIAO Huapeng. Chaos Control of Synchronous Reluctance Motor Based on Small Gain Theorem [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 44-51. |
[5] | HUANG Bingfang,WEN Binghai,QIU Wen,ZHAO Wanling,CHEN Yanyan. Research on Real Time Measurement of Contact Angle Based on Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 34-43. |
[6] | WU Lei,YANG Li,GUO Pengxiao. Feedback Linearization Control of Rucklidge System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(1): 21-27. |
[7] | XU Sheng-zhou, XU Xiang-yang, HU Huai-fei, LI Bo. Left Ventricle MRI Segmentation Based on Developed Dynamic Programming [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(2): 35-41. |
[8] | KANG Yun-lian, LIU Long-sheng, ZHAO Jun-ling. Distributional Chaotic Property of the Factor System of Symbolic Dynamical System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(4): 66-70. |
[9] | LIU Jun-xian, PEI Qi-ming, QIN Zong-ding, JIANG Yu-ling. Study of the Lorenz Equations in a New Parameter Space [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 1-12. |
[10] | QIN Zhang-rong, ZHANG Chao-ying, QIU Bin, LI Yuan-yuan, MO Liu-liu. Implementation of the Acceleration Simulation with Lattice Boltzmann Method Based on CUDA [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 18-24. |
[11] | ZHANG Chao-ying, LI Bing-hua, QIN Zhang-rong. Designing of Comprehensive Optimization Parallel Algorithm for Lattice Boltzmann Method Based on CUDA [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 142-148. |
[12] | QIU Bing, WANG Li-long, XUE Ze, LI Hua-bing. Kinetics Characteristic Transitionof Suspended Particle in a Pulsating Flow in Microvessel by Lattice Boltzmann Simulation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(4): 7-11. |
[13] | GAO Jun-fen, HU Wei-ping. Recognition and Study of Pathological Voices Based on NonlinearDynamics Using GMM [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 5-8. |
[14] | LI Yong, JIA Zhen. Applications of Discrete Chaotic Systems in Secure Communication [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 15-19. |
|