Journal of Guangxi Normal University(Natural Science Edition) ›› 2019, Vol. 37 ›› Issue (2): 27-37.doi: 10.16088/j.issn.1001-6600.2019.02.004

Previous Articles     Next Articles

Contact Angle in Micro Droplet Deformation Based on Lattice Boltzmann Method

QIU Wen, YE Yong, ZHOU Sihao, WEN Binghai*   

  1. College of Computer Science and Information Technology, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2018-08-31 Online:2019-04-25 Published:2019-04-28

Abstract: Contact angle is a common natural phenomenon,which is the result of liquid wetting on the solid surface. The surface wettability can be examined by measuring the contact angle. Starting from the free energy principle,the multi-phase Lattice Boltzmann method based on chemical potential is used to study the contact angle in the deformation of tiny droplets on the surface. The hydrophilic and hydrophobic properties of the solid surface can be changed by setting different chemical potential. The present simulations include both the sessile droplets standing on the surface and the pendent droplets adsorbing below the surface. Ignoring the effect of gravity,the simulating contact angle is consistent to the theoretical results of the spherical crown method,and the contact angle can be linearly adjusted by the surface chemical potential. Considering the effect of gravity,although the droplets of different sizes have some degrees of obvious deformations,the contact angle computed by the present method remains the same; this verifies the theoretical analysis that the microscopic contact angle is independent of the gravity.

Key words: Lattice Boltzmann method, contact angle, surface wettability, droplet deformation

CLC Number: 

  • O35
[1] 赵亚溥. 表面与界面物理力学[M]. 北京:科学出版社,2018.
[2] SUI Y,DING H,SPELT P D M. Numerical simulations of flows with moving contact lines[J]. Annu Rev Fluid Mech,2014,46(1):97-119.
[3] 黄兵方,闻炳海,邱文,等.基于晶格Boltzmann方法的接触角实时测量研究[J].广西师范大学学报(自然科学版),2018,36(1):34-43.
[4] 闻炳海,张超英,刘海燕,等.大血管中血液流动的LBM模拟[J].广西师范大学学报(自然科学版),2008,36(4):22-25.
[5] KWOKD Y,LIN R,MUI M,et al. Low-rate dynamic and static contact angles and the determination of solid surface tensions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,1996,116(1/2):63-77.
[6] BEZUGLYIB A,TARASOV O A,FEDORETS A A. Modified tilting-plate method for measuring contact angles[J]. Colloid J,2001,63(6):668-674.
[7] ZHANG W,HALLSTRÖM B. Membrane characterization using the contact angle technique I. Methodology of the captive bubble technique[J]. Desalination,1990,79(1):1-12.
[8] TRETINNIKOVO N,IKADA Y. Dynamic wetting and contact angle hysteresis of polymer surfaces studied with the modified Wilhelmy balance method[J]. Langmuir,1994,10(5):1606-1614.
[9] 郭照立,郑楚光. 格子Boltzmann方法的原理及应用[M]. 北京:科学出版社,2009.
[10] 何雅玲,王勇,李庆. 格子Boltzmann方法的理论及应用[M]. 北京:科学出版社,2009.
[11] BENZI R,BIFERALE L,SBRAGAGLIA M,et al. Mesoscopic modeling of a two-phase flow in the presence of boundaries: the contact angle[J]. Phys Rev E,2006,74(1):021509.
[12] BOMMER S,SCHOLL H,SEEMANN R,et al. Depinning of drops on inclined smooth and topographic surfaces: experimental and Lattice Boltzmann model study[J]. Langmuir,2014,30(37):11086-11095.
[13] HUANG H,THORNE D T,SCHAAP M G,et al. Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models[J]. Phys Rev E,2007,76(6):066701.
[14] JANSEN H P,BLIZNYUK O,KOOIJ E S,et al. Simulating anisotropic droplet shapes on chemically striped patterned surfaces[J]. Langmuir,2012,28(1):499-505.
[15] WANG C,WEN B,TU Y,et al. Friction reduction at a superhydrophilic surface: role of ordered water[J]. The Journal of Physical Chemistry C. 2015,119(21):11679-11684.
[16] CHEN S,DOOLEN G. Lattice Boltzmann method for fluid flows[J]. Annu Rev Fluid Mech,2012,30(1):329-364.
[17] LI Q,ZHOU P,YAN H J. Pinning-Depinning mechanism of the contact line during evaporation on chemically patterned surfaces: a Lattice Boltzmann study[J]. Langmuir,2016,32(37):9389.
[18] CHEN L,KANG Q,MU Y,et al. A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications[J]. International Journal of Heat and Mass Transfer,2014,76(6):210-236.
[19] DING H,SPELT P D M. Wetting condition in diffuse interface simulations of contact line motion[J]. Phys Rev E,2007,75(4):046708.
[20] LEE H G,KIM J. Accurate contact angle boundary conditions for the Cahn-Hilliard equations[J]. Comput Fluids,2011,44(1):178-186.
[21] DONG S. On imposing dynamic contact-angle boundary conditions for wall-bounded liquid-gas flows[J]. Comput Method Appl M,2012,247(5):179-200.
[22] WEN B,ZHANG C,FANG H. Hydrodynamic force evaluation by momentum exchange method in Lattice Boltzmann simulations[J]. Entropy,2015,17(12):8240-8266.
[23] WEN B,ZHANG C,TU Y,et al. Galilean invariant fluid-solid interfacial dynamics in lattice Boltzmann simulations[J]. J Comput Phys,2014,266(4):161-170.
[24] LAI H,XU A,ZHANG G,et al. Nonequilibrium thermohydrodynamic effects on the Rayleigh-Taylor instability in compressible flows[J]. Phys Rev E,2016,94(2):023106.
[25] WEN B,QIN Z,ZHANG C,et al. Thermodynamic-consistent lattice Boltzmann model for nonideal fluids[J]. Europhysics Letters,2015,112(4):44002.
[26] WEN B,ZHOU X,HE B,et al. Chemical-potential-based lattice Boltzmann method for nonideal fluids[J]. Phys Rev E,2017,95(6-1):063305.
[27] SWIFT M R,OSBORN W R,YEOMANS J M. Lattice Boltzmann simulation of nonideal fluids[J]. Physical Review Letters,1995,75(5):830-833.
[28] SHAN X. Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models[J]. Phys Rev E,2006,73(4):047701.
[29] LI Q,LUO K H,KANG Q J,et al. Contact angles in the pseudopotential lattice Boltzmann modeling of wetting[J]. Phys Rev E,2014,90(5):053301.
[30] WEN B,HUANG B,QIN Z,et al. Contact angle measurement in Lattice Boltzmann method[J]. Computers and Mathematics with Applications,2018,76(7):1686-1698.
[31] WANG Z,ZHAO Y P. Wetting and electrowetting on corrugated substrates[J]. Physics of Fluids,2017,29(6):067101.
[32] HUANG H,KRAFCZYK M,LU X. Forcing term in single-phase and Shan-Chen-type multiphase lattice Boltzmann models[J]. Phys Rev E,2011,84(2):046710.
[33] ROWLINSON J S,WIDOM B. Molecular theory of capillarity[M]. Dxford: Clarendon Press,1982: 647-649.
[34] LUBARDA V. Mechanics of a liquid drop deposited on a solid substrate[J]. Soft Matter,2012,8(40):10288-10297.
[35] PICKNETTR G,BEXON R. The evaporation of sessile or pendant drops in still air[J]. J Colloid Interface Sci,1977,61(2):336-350.
[36] XIE C,ZHANG J,BERTOLA V,et al. Droplet evaporation on a horizontal substrate under gravity field by mesoscopic modeling[J]. J Colloid Interface Sci,2016,463:317-323.
[1] LING Fengru, ZHANG Chaoying, CHEN Yanyan, QIN Zhangrong. A Unified Boundary Condition Based on the Halfway Bounce-back Scheme in Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 70-78.
[2] ZHANG Lisheng, ZHANG Zhiyong, MA Kaihua, LI Guofang. Studying Oscillations in Convection Cahn-Hilliard System with Improved Lattice Boltzmann Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 15-26.
[3] HUANG Bingfang,WEN Binghai,QIU Wen,ZHAO Wanling,CHEN Yanyan. Research on Real Time Measurement of Contact Angle Based on Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 34-43.
[4] QIN Zhang-rong, ZHANG Chao-ying, QIU Bin, LI Yuan-yuan, MO Liu-liu. Implementation of the Acceleration Simulation with Lattice Boltzmann Method Based on CUDA [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 18-24.
[5] ZHANG Chao-ying, LI Bing-hua, QIN Zhang-rong. Designing of Comprehensive Optimization Parallel Algorithm for Lattice Boltzmann Method Based on CUDA [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 142-148.
[6] QIU Bing, WANG Li-long, XUE Ze, LI Hua-bing. Kinetics Characteristic Transitionof Suspended Particle in a Pulsating Flow in Microvessel by Lattice Boltzmann Simulation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(4): 7-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!