Journal of Guangxi Normal University(Natural Science Edition) ›› 2019, Vol. 37 ›› Issue (2): 15-26.doi: 10.16088/j.issn.1001-6600.2019.02.003

Previous Articles     Next Articles

Studying Oscillations in Convection Cahn-Hilliard System with Improved Lattice Boltzmann Model

ZHANG Lisheng*, ZHANG Zhiyong, MA Kaihua, LI Guofang   

  1. College of Science, North China University of Technology, Beijing 100144, China
  • Received:2018-06-04 Online:2019-04-25 Published:2019-04-28

Abstract: Convection Cahn-Hilliard (abbreviated as C-H) system is a class of continuum medium models,which can be used to explore phase transitions in binary systems. Applications of C-H system have been so ubiquitous in solid theory,excitable mathematics,material science and so on, therefore, great attentions have been paid by researchers in recent years from the characteristics of high nonlinearity,rich and complicated dynamical phenomena. In this paper,it is proposed that improved Lattice Boltzmann (LB for short) method with source term from the spatial derivatives of high order to simulate 1D-convetion C-H system. According to such LB model,transfer matrix of system and the stable condition of numerical computation are explored,which are closely related to the ratio of lattice spacing and time step. Based on such LB model,interesting research results are realized:on one hand,the growing convection strength k decreases oscillation range of system A,and power law feature of k-A relationship is found independent of diverse initial states. On the other hand,although the growth of convection strength can promote oscillation frequency of system,frequency hopping phenomena are outstanding. Furthermore,different initial states can lead to periodic oscillations with different frequencies,which mean that oscillations with different frequencies can coexist in the same convection strength.

Key words: Lattice Boltzmann method, convection Cahn-Hilliard equation, oscillation range, power law, frequency hopping, frequency coexistence, chaos

CLC Number: 

  • O411.3
[1] CAHN J W. On spinodal decomposition[J]. Acta Metall,1961,9(3):795-501.
[2] CAHN J W,HILLIARD J E. Free energy of a non-uniform system I. Interfacial free energy[J]. J Chem Phys,1958,2(2):258-267.
[3] 李德生,李清仪. Cahn-Hilliard方程的动力学稳定性[J]. 数学学报,2000,43(1):127-134.
[4] 曹保胜,何洋洋,董斌. 纳米尺度下体系自由能对扩散模型的影响[J]. 材料导报,2009,23(11):113-116.
[5] GOLOVIN A A,NEPOMNYASHCHY A A,DAVIS S H,et al. Convective Cahn-Hilliard models:from coarsening to roughening[J]. Phys Rev Lett,2001,86(8):1550-1553.
[6] 罗勇,欧阳文斌,杨其,等. 振荡剪切场下PS/PVME共混物的相分离动力学研究[J]. 高分子学报,2006,4(4):557-563.
[7] 赵才地. 非线性Cahn-Hilliard方程的行波解[J]. 武汉科技大学学报(自然科学版),2006,29(2):215-216.
[8] GUO Xiulan,LI Kaitai,YANG Shouzhi. The global attractor for a sort of fourth order nonlinear parabolic equations[J]. Mathematica Applicata,2002,15(3):1-7.
[9] 张正丽,张强. 一类Cahn-Hilliard方程的定态分歧[J]. 四川大学学报(自然科学版),2011,48(4):729-732.
[10] 曹保胜,张志鹏,雷明凯. 二元非均匀体系非线性动力学扩散模型的相关性[J]. 金属学报,2008,44:281.
[11] SAVINA T V,GOLOVIN A A,DAVIS S H,et al. Faceting of a growing crystal surface by surface diffusion[J]. Phys Rev E,2003,67:021606.
[12] MIKHAIL K. Long-wave model for strongly anisotropic growth of a crystal step[J]. Phys Rev E,2013,88:022402.
[13] 梁宏,柴振华,施保昌. 分叉微通道内液滴动力学行为的格子Boltzmann 方法模拟[J]. 物理学报,2016,65(20):204701.
[14] 上官勇刚,吴远志,陈锋,等. 制备方法对聚合物共混物相分离与黏弹弛豫的影响[J]. 中国科学:化学,2011,41(2):391-397.
[15] 黄锐. Cahn-Hilliard方程的径向对称稳态解[D]. 长春:吉林大学,2004.
[16] 张铁. Cahn-Hilliard方程有限元分析[J]. 计算数学,2006,28(3):281-292.
[17] JELI$\acute{C}$ A,ILG P,ÖTTINGER H C. Bridging length and time scales in sheared demixing systems:From the Cahn-Hilliard to the Doi-Ohta model[J]. Phys Rev E,2010,81:011131.
[18] MITLIN V. On the μ-transform:Applications to the Cahn-Hilliard equation[J]. Phys Lett A,2006,58:142-148.
[19] LI Juan,SUN Zhizhong,ZHAO Xuan. A three level linearized compact difference scheme for the Cahn-Hilliard equation[J]. Science China:Mathematics,2012,55(4):805-826.
[20] GRUNAU D,CHEN S,EGGERT K A. Lattice Boltzmann model for multiphase fluid flows[J]. Phys Fluids,1993,A5:2557.
[21] 许爱国,张广财,甘延标. 相分离过程的离散Boltzmnn方法研究进展[J]. 力学与实践,2016,38(4):361-374.
[22] LAI H L,MA C F. Lattice Boltzmann method for the generalized Kuramoto-Sivashinsky equation[J]. Physica A,2009,388:1405-1412.
[23] CHAI Z H,HE N Z,GUO Z L,et al. Lattice Boltzmann model for high-order nonlinear partial differential equations[J]. Phys Rev E,2018,97:013304.
[24] McNAMARA G,ZANETTI G. Use of the Boltzmann equation to simulation lattice gas automata[J]. Phys Rev Lett,1988,61(20/22):2332-2335.
[25] CHEN S Y,CHEN H D,MARITINEZ D,et al. Lattice Boltzmann model simulation of magneto hydynamics[J]. Phys Rev Lett,1991,67(27):3776-3780.
[26] 王勇. 格子Boltzmann方法在热声领域的应用及热声谐振管可视化实验研究[D]. 西安:西安交通大学,2009.
[27] 陈杰,钱跃竑. 热格子Boltzmann方法分析及应用[J]. 上海大学学报(自然科学版),2012,18(5):489-495.
[28] 邓敏艺,刘慕仁,何云,等. 基于九速四方格子模型的二维对流扩散方程格子Boltzmann 方法模拟[J]. 计算物理,2000,17(1/2):161-165.
[29] QIAN Y H,SUCCI S,ORSZAG S A,Recent advances in Lattice Boltzmann computing[J]. Annual Reviews of Computational Physics,1995,3:195-242.
[30] 史秀波. 用于波动方程的格子Boltzmann方法及数值模拟研究[D]. 长春:吉林大学,2010.
[31] CHAI Z H,SHI B C,ZHENG L. A unified Lattice Boltzmann model for some nonlinear partial differential equations[J]. Chaos,Solitons and Fractals,2008,36:874-882.
[32] BÖSCH F,KARLIN I V. Exact Lattice Boltzmann equation[J]. Phys Rev Lett,2013,111:090601.
[33] XU A G,ZHANG G C,GAN Y B,et al. Lattice Boltzmann modeling and simulation of compressible flows[J]. Front Phys,2012,7(5):582.
[34] MENDOZA M,BOGHOSIAN B M,HERRMANN H J,et al,Fast Lattice Boltzmann solver for relativistic hydrodynamics[J]. Phys Rev Lett,2010,105(1):014502.
[35] LIN Chuandong,LUO Kaihong,FEI Linlin,et al. A multi-component discrete Boltzmann model for nonequilibrium reactive flows[J]. Sci Rep,2017,7:14580.
[36] LIANG H,SHI B C,GUO Z L,et al. Phase-field-based multiple-relaxation-time Lattice Boltzmann model for incompressible multiphase flows[J]. Phys Rev E,2014,89:053320.
[37] ZHENG Lin,ZHENG Song,ZHAI Qinglan. Lattice Boltzmann equation method for the Cahn-Hilliard equation[J]. Phys Rev E,2015,91:013309.
[38] 许爱国,张广财,李英骏,等. 非平衡与多相复杂系统模拟研究:Lattice Boltzmann 动力学理论与应用[J]. 物理学进展,2014,24(3):136-167.
[1] LI Feiyu, WENG Xiaoxiong, YAO Shushen. Research on the Scaling Law Based on the Travel Time Interval of Passengers’ Group [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 1-9.
[2] LING Fengru, ZHANG Chaoying, CHEN Yanyan, QIN Zhangrong. A Unified Boundary Condition Based on the Halfway Bounce-back Scheme in Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 70-78.
[3] QIU Wen, YE Yong, ZHOU Sihao, WEN Binghai. Contact Angle in Micro Droplet Deformation Based on Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 27-37.
[4] WU Lei, YANG Li, LI Qishang, XIAO Huapeng. Chaos Control of Synchronous Reluctance Motor Based on Small Gain Theorem [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 44-51.
[5] HUANG Bingfang,WEN Binghai,QIU Wen,ZHAO Wanling,CHEN Yanyan. Research on Real Time Measurement of Contact Angle Based on Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 34-43.
[6] WU Lei,YANG Li,GUO Pengxiao. Feedback Linearization Control of Rucklidge System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(1): 21-27.
[7] XU Sheng-zhou, XU Xiang-yang, HU Huai-fei, LI Bo. Left Ventricle MRI Segmentation Based on Developed Dynamic Programming [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(2): 35-41.
[8] KANG Yun-lian, LIU Long-sheng, ZHAO Jun-ling. Distributional Chaotic Property of the Factor System of Symbolic Dynamical System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(4): 66-70.
[9] LIU Jun-xian, PEI Qi-ming, QIN Zong-ding, JIANG Yu-ling. Study of the Lorenz Equations in a New Parameter Space [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 1-12.
[10] QIN Zhang-rong, ZHANG Chao-ying, QIU Bin, LI Yuan-yuan, MO Liu-liu. Implementation of the Acceleration Simulation with Lattice Boltzmann Method Based on CUDA [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 18-24.
[11] ZHANG Chao-ying, LI Bing-hua, QIN Zhang-rong. Designing of Comprehensive Optimization Parallel Algorithm for Lattice Boltzmann Method Based on CUDA [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 142-148.
[12] QIU Bing, WANG Li-long, XUE Ze, LI Hua-bing. Kinetics Characteristic Transitionof Suspended Particle in a Pulsating Flow in Microvessel by Lattice Boltzmann Simulation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(4): 7-11.
[13] GAO Jun-fen, HU Wei-ping. Recognition and Study of Pathological Voices Based on NonlinearDynamics Using GMM [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 5-8.
[14] LI Yong, JIA Zhen. Applications of Discrete Chaotic Systems in Secure Communication [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 15-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!