Journal of Guangxi Normal University(Natural Science Edition) ›› 2026, Vol. 44 ›› Issue (1): 227-236.doi: 10.16088/j.issn.1001-6600.2025012201

• Ecology and Environmental Science Research • Previous Articles    

Optimizing Accuracy of Random Forest Interpretation Based on Terrain Data

HE Wenmin1,2,3, LIU Xuanyuan1,2,3, ZHOU Qihai1,2,3, ZHANG Mingxia1,2,3 *   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. Guangxi Key Laboratory of Rare and Endangered Animal Ecology (Guangxi Normal University), Guilin Guangxi 541006, China;
    3. The Chongzuo White-headed Langur Field Observation and Research Station of Guangxi, Chongzuo Guangxi 532204, China
  • Received:2025-01-22 Revised:2025-04-17 Online:2026-01-05 Published:2026-01-26

Abstract: Land use data can provide important basis for many scientific researches, and remote sensing images are widely used as data source for land use type interpretation. In order to improve the accuracy of remote sensing image classification, it is necessary to involve some other digital information. The terrain in the karst area of Guangxi is complex, together with quick expansion of plantation in recent years, which brings difficulties to the interpretation of remote sensing images. Based on the random forest algorithm, this study conducted land use interpretation of remote sensing images in Chongzuo, Guangxi. Two classification procedures were run: the first one only used remote sensing image data for classification, and altitude and slope data were added in the second procedure. Results show that the classification accuracy of using remote sensing images alone is 0.849, and after adding altitude and slope data, the overall accuracy improved to 0.961. The discrimination among land use types such as natural forests, artificial forests and farmland is largely increased, which is particularly useful in rugged landforms such as karst. This research provides a better solution for land use montoring.

Key words: karst landform, remote sensing image interpretation, terrain factor, land use

CLC Number:  TP18; TP751; P237
[1] HOMER C, HUANG C Q, YANG L M, et al. Development of a 2001 national land-cover database for the United States[J]. Photogrammetric Engineering & Remote Sensing, 2004, 70(7): 829-840. DOI: 10.14358/pers.70.7.829.
[2] FOODY G M. Status of land cover classification accuracy assessment[J]. Remote Sensing of Environment, 2002, 80(1): 185-201. DOI: 10.1016/S0034-4257(01)00295-4.
[3] HANSEN M C, DEFRIES R S, TOWNSHEND J R G, et al. Global land cover classification at 1 km spatial resolution using a classification tree approach[J]. International Journal of Remote Sensing, 2000, 21(6/7): 1331-1364. DOI: 10.1080/014311600210209.
[4] FRIEDL M A, MCIVER D K, HODGES J C F, et al. Global land cover mapping from MODIS: algorithms and early results[J]. Remote Sensing of Environment, 2002, 83(1/2): 287-302. DOI: 10.1016/S0034-4257(02)00078-0.
[5] WULDER M A, WHITE J C, GOWARD S N, et al. Landsat continuity: Issues and opportunities for land cover monitoring[J]. Remote Sensing of Environment, 2008, 112(3): 955-969. DOI: 10.1016/j.rse.2007.07.004.
[6] LOVELAND T R, REED B C, BROWN J F, et al. International journal of remote sensing[J]. Remote Sensing of Environment, 2000, 21(6): 1303-1330. DOI: 10.1080/014311600210191.
[7] ZHU Z, WOODCOCK C E. Continuous change detection and classification of land cover using all available Landsat data[J]. Remote Sensing of Environment, 2014, 144: 152-171. DOI: 10.1016/j.rse.2014.01.011.
[8] 薛洋, 曾庆科, 夏海英, 等. 基于卷积神经网络超分辨率重建的遥感图像融合[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 33-41. DOI: 10.16088/j.issn.1001-6600.2018.02.005.
[9] ZHENG Y, CHENG L L, WANG J Q, et al. Spatial conflict of land use based on “element-pattern-effect”: Logical main lines and coordination paths[J]. Journal of Natural Resources, 2025, 40(2): 316. DOI: 10.31497/zrzyxb.20250203.
[10] BURKHARD B, KROLL F, NEDKOV S, et al. Mapping ecosystem service supply, demand and budgets[J]. Ecological Indicators, 2012, 21: 17-29. DOI: 10.1016/j.ecolind.2011.06.019.
[11] GUIDICI D, CLARK M. One-dimensional convolutional neural network land-cover classification of multi-seasonal hyperspectral imagery in the San francisco bay area, California[J]. Remote Sensing, 2017, 9(6): 629. DOI: 10.3390/rs9060629.
[12] WESSELS K J, REYERS B, VAN JAARSVELD A S, et al. Identification of potential conflict areas between land transformation and biodiversity conservation in north-eastern South Africa[J]. Agriculture, Ecosystems & Environment, 2003, 95(1): 157-178. DOI: 10.1016/S0167-8809(02)00102-0.
[13] JIN S, DEWITZ J, HOMER C, Et al. Completion of the 2006 national land cover database for the conterminous united states[J]. Photogrammetric Engineering & Remote Sensing, 2011, 77(9): 858-864.
[14] 罗艳华, 李平星, 肖伟烨, 等. 土地利用转型的生态环境效应研究进展与展望[J]. 生态科学, 2024, 43(6): 220-231. DOI: 10.14108/j.cnki.1008-8873.2024.06.024.
[15] LI Y, WU H, ZHU L Q, et al. Identification of ecosystem service degradation risks in Zhengzhou based on multi-scenario simulation of land use changes[J]. Journal of Natural Resources, 2025, 40(2): 493. DOI: 10.31497/zrzyxb.20250213.
[16] 黄子豪, 杜华强, 李雪建, 等. 土地利用/覆盖变化及其对森林碳收支影响研究综述[J]. 遥感学报, 2025, 25(1): 49-69. DOI: 10.11834/jrs.20233169.
[17] TOPALOĞLU R H, SERTEL E, MUSAOĞLU N. Assessment of classification accuracies of sentinel-2 and landsat-8 data for land cover/use mapping[J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, XLI-B8: 1055-1059. DOI: 10.5194/isprsarchives-xli-b8-1055-2016.
[18] KHATAMI R, MOUNTRAKIS G, STEHMAN S V. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research[J]. Remote Sensing of Environment, 2016, 177: 89-100. DOI: 10.1016/j.rse.2016.02.028.
[19] GÓMEZ C, WHITE J C, WULDER M A. Optical remotely sensed time series data for land cover classification: a review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 116: 55-72. DOI: 10.1016/j.isprsjprs.2016.03.008.
[20] DURO D C, FRANKLIN S E, DUBÉ M G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery[J]. Remote Sensing of Environment, 2012, 118: 259-272. DOI: 10.1016/j.rse.2011.11.020.
[21] XIA J S, DALLA MURA M, CHANUSSOT J, et al. Random subspace ensembles for hyperspectral image classification with extended morphological attribute profiles[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9): 4768-4786. DOI: 10.1109/TGRS.2015.2409195.
[22] CHEN Y B, DOU P, YANG X J. Improving land use/cover classification with a multiple classifier system using AdaBoost integration technique[J]. Remote Sensing, 2017, 9(10): 1055. DOI: 10.3390/rs9101055.
[23] LIU S C, DU K C, ZHENG Y J, et al. Remote sensing change detection technology in the Era of artificial intelligence: Inheritance, development and challenges[J]. National Remote Sensing Bulletin, 2023, 27(9): 1975-1987. DOI: 10.11834/jrs.20222199.
[24] 周明. 高精度卫星遥感影像在工程测绘中的应用与挑战[J]. Engineering Technology and Quality Management, 2025, 3(1): 63-65. DOI: 10.61369/ETQM.9091.
[25] 张国宾, 韩如雪, 张健秀. 高分辨率遥感影像解译方法探讨[J]. 科技创新导报, 2018, 15(13): 77-78. DOI: 10.16660/j.cnki.1674-098X.2018.13.077.
[26] 周培诚, 程塨, 姚西文, 等. 高分辨率遥感影像解译中的机器学习范式[J]. 遥感学报, 2021, 25(1): 182-197.
[27] 曹恒硕, 丁宁, 钱建军, 等. 多源高分辨率卫星遥感海岸线数据集[J]. 计算机与数字工程, 2025, 53(1): 202-208. DOI: 10. 3969/j.issn.1672-9722.2025.01.037.
[28] 肖丹, 安裕伦, 熊康宁. 3S技术支持下喀斯特景观解译与格局研究: 以贵州省清镇市为例[C]//现代地理科学与贵州社会经济. 贵州财经学院经济与管理学院, 贵州师范大学地理与生物科学学院, 贵州师范大学中国南方喀斯特研究院, 2009: 87-92.
[29] 金伟, 余著成, 徐全, 等. 1991—2021年江山仙霞岭省级自然保护区土地覆被动态变化遥感监测[J]. 自然保护地, 2024, 4(4): 84-93. DOI: 10.12335/2096-8981.2023120701.
[30] GUAN H Y, LI J, CHAPMAN M, et al. Integration of orthoimagery and lidar data for object-based urban thematic mapping using random forests[J]. International Journal of Remote Sensing, 2013, 34(14): 5166-5186. DOI: 10.1080/01431161.2013.788261.
[31] BELGIU M, DRĂGU L. Random forest in remote sensing: a review of applications and future directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114: 24-31. DOI: 10.1016/j.isprsjprs.2016.01.011.
[32] GISLASON P O, BENEDIKTSSON J A, SVEINSSON J R. Random Forests for land cover classification[J]. Pattern Recognition Letters, 2006, 27(4): 294-300. DOI: 10.1016/j.patrec.2005.08.011.
[33] BRUZZONE L, CONESE C, MASELLI F, et al. Multisource classification of complex rural areas by statistical and neural-network approaches[J]. Photogrammetric Engineering and Remote Sensing, 1997, 63(5): 523-533.
[34] 刘志洋, 尹慧杰, 李明渊, 等. 利用多源遥感数据的中国三大经济带代表区域经济发展分析[J/OL]. 武汉大学学报(信息科学版): 1-17[2025-06-11]. https://doi.org/10.13203/j.whugis20240233.
[35] 潘耀忠, 李强子, 张锦水, 等. 主要农作物面积多维多尺度立体统计遥感调查技术研究进展[J]. 北京师范大学学报(自然科学版), 2025, 61(1): 118-25. DOI: 10.12202/j.0476-0301.2024188.
[36] GAHEGAN M, FLACK J. A Model to support the integration of image understanding techniques within a GIS[J]. Photogrammetric Engineering & Remote Sensing, 1996, 62(5): 483-90. DOI: 0099-1112/96/6205-483$3.00/0.
[37] FAHSI A, TSEGAYE T, TADESSE W, et al. Incorporation of digital elevation models with Landsat-TM data to improve land cover classification accuracy[J]. Forest Ecology and Management, 2000, 128(1/2): 57-64. DOI: 10.1016/S0378-1127(99)00272-8.
[38] 朱星磊, 安裕伦, 黄祖宏, 等. 喀斯特地区遥感影像解译新算法: 支持向量机算法[J]. 中国岩溶, 2011, 30(2): 222-226. DOI: 10.3969/j.issn.1001-4810.2011.02.016.
[39] 赵银军, 曾兰, 何忠, 等. 基于多源遥感影像的喀斯特地貌景观解译及格局研究[J]. 水土保持研究, 2017, 24(4): 158-162. DOI: 10.13869/j.cnki.rswc.2017.04.026.
[40] 刘宣园, 管超毅, 张明霞, 等. 保护区缓解耕地扩张对喀斯特森林景观破碎化的影响研究[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 202-210. DOI: 10.16088/j.issn.1001-6600.2022101701.
[41] 廖超明, 韦媛媛, 唐丹, 等. 喀斯特地区土地利用冲突识别与影响机制[J]. 水土保持研究, 2025, 32(1): 358-367. DOI: 10.13869/j.cnki.rswc.2025.01.028.
[42] 陈知明, 张江, 邱汉清, 等. 基于密集连接的高分辨率遥感图像分类[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 88-94. DOI: 10.16088/j.issn.1001-6600.2021071503.
[43] LI Q, YUE Y M, LIU S Y, et al. Beyond tree cover: Characterizing Southern China’s forests using deep learning[J]. Remote Sensing in Ecology and Conservation, 2023, 9(1): 17-32. DOI: 10.1002/rse2.292.
[44] BREIMAN L. Bagging predictors[J]. Machine Learning, 1996, 24(2): 123-140. DOI: 10.1007/BF00058655.
[45] DIETTERICH T G. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization[J]. Machine Learning, 2000, 40(2): 139-157. DOI: 10.1023/A:1007607513941.
[46] BREIMAN L. Random Forests[J]. Machine Learning, 2001, 45: 5-32. DOI: 10.1023/A:1010933404324.
[47] RODRIGUEZ-GALIANO V F, GHIMIRE B, ROGAN J, et al. An assessment of the effectiveness of a random forest classifier for land-cover classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 67: 93-104. DOI: 10.1016/j.isprsjprs.2011.11.002.
[48] KAMBHAM S P, BHARATHI D. Deep learning based image fusion applied on landsat-8 archival data using UVCGAN[C] //2023 Innovations in Power and Advanced Computing Technologies (i-PACT). December 8-10, 2023, Kuala Lumpur, Malaysia. IEEE, 2023: 1-6. DOI: 10.1109/i-PACT58649.2023.10434448.
[49] SINGHAL S, JAMES L, G A R V, et al. Cloud detection from AWiFS imagery using deep learning[C]//2023 International Conference on Machine Intelligence for GeoAnalytics and Remote Sensing (MIGARS). January 27-29, 2023, Hyderabad, India. IEEE, 2023: 1-4. DOI: 10.1109/MIGARS57353.2023.10064610.
[50] WU H R, GENG J, JIANG W. Multidomain constrained translation network for change detection in heterogeneous remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5616916. DOI: 10.1109/TGRS.2024.3381196.
[51] KUSSUL N, LAVRENIUK M, SKAKUN S, et al. Deep learning classification of land cover and crop types using remote sensing data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5): 778-782. DOI: 10.1109/LGRS.2017.2681128.
[52] THANH NOI P, KAPPAS M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery[J]. Sensors, 2017, 18(1): 18. DOI: 10.3390/s18010018.
[53] 江涛. 遥感影像解译标志库的建立和应用[J]. 地理空间信息, 2010, 8(5): 31-33. DOI: 10.3969/j.issn.1672-4623.2010.05.011.
[1] ZHANG Xiaorui, CHEN Yu, WANG Zhenbo. Impact of Urban Land Use Evolution on Landscape Pattern and Ecosystem Service Value in Jianghuai Region, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 199-214.
[2] LIU Xiaojuan, LIN Lu, HU Yucong, PAN Lei. Research on the Influence of Land Use Types Surrounding Stations on Subway Passenger Satisfaction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 1-12.
[3] WANG Junguang, WANG Peng, ZHAO Zhizhong, TANG Wei, ZHAO Zeyang, LI Yan. Effects of Land Use Types on Soil Organic Carbon Content in Eastern Hainan Island [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 171-179.
[4] ZHU Jing, LIU Ding, WANG Shan, HUANG Zuoshui, LIANG Jianhong. Impacts of Soil Nutrients and Stoichiometry on Microbial Carbon Use Efficiency [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 376-387.
[5] GAO Hongjuan, HAN Huiqing, LUO Xuqiang, LI Jinyan, CHEN Mengling, ZHANG Xinding. Effects of Land Use Change on Freshwater Ecosystem Services in Guizhou, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 157-163.
[6] LI Xianjiang, SHI Shuqin, CAI Weimin, CAO Yuqing. Simulation of Land Use Change in Tianjin Binhai New Area Based on CA-Markov Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 133-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiaojuan, LIN Lu, HU Yucong, PAN Lei. Research on the Influence of Land Use Types Surrounding Stations on Subway Passenger Satisfaction[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 1 -12 .
[2] HAN Huabin, GAO Bingpeng, CAI Xin, SUN Kai. Fault Diagnosis of Wind Turbine Blade Icing Based on HO-CNN-BiLSTM-Transformer Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 13 -28 .
[3] CHEN Jianguo, LIANG Enhua, SONG Xuewei, QIN Zhangrong. Lattice Boltzmann Simulation for the Aqueous Humour Dynamics of the Human Eye Based on 3D Reconstruction of OCT Images[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 29 -41 .
[4] LI Hao, HE Bing. Droplet Rebound Behavior on Grooves Surface[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 42 -53 .
[5] TIAN Sheng, ZHAO Kailong, MIAO Jialin. Research on Automatic Driving Road Traffic Detection Algorithm Based on Improved YOLO11n Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 1 -9 .
[6] HUANG Yanguo, XIAO Jie, WU Shuiqing. Bidirectional Efficient Multi-scale Traffic Flow Prediction Based on D2STGNN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 10 -22 .
[7] LIU Zhihao, LI Zili, SU Min. YOLOv8-based Helmet Detection Method for Electric Vehicle Riders Combining Intelligent Communication and UAV-Assistance[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 23 -32 .
[8] ZHANG Zhulu, LI Huaqiang, LIU Yang, XU Lixiong. Non-intrusive Load Identification Based on Bi-LSTM Feature Fusion and FT-FSL[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 33 -44 .
[9] WANG Tao, LI Yuansong, SHI Rui, CHEN Huining, HOU Xianqing. MGDE-UNet: Defect Segmentation Model for Lightweight Photovoltaic Cells[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 45 -55 .
[10] HUANG Wenjie, LUO Weiping, CHEN Zhennan, PENG Zhixiang, DING Zihao. Research on Lightweight PCB Defect Detection Algorithm Based on YOLO11[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 56 -67 .