Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (4): 58-68.doi: 10.16088/j.issn.1001-6600.2024061802
• Intelligence Information Processing • Previous Articles Next Articles
HAN Shuo, JIANG Linfeng, YANG Jianbin*
| [1] LAI W C, KHAN A A. Numerical solution of the Saint-Venant equations by an efficient hybrid finite-volume/finite-difference method[J]. Journal of Hydrodynamics, 2018, 30(2): 189-202. DOI: 10.1007/s42241-018-0020-y. [2] SUKRON M, HABIBAH U, HIDAYAT N. Numerical solution of Saint-Venant equation using Runge-Kutta fourth-order method[J]. Journal of Physics: Conference Series, 2021, 1872(1): 012036. DOI: 10.1088/1742-6596/1872/1/012036. [3] 钱江,张鼎.圣维南方程的3次B样条拟插值数值解[J].计算机科学,2023,50(4): 125-132. DOI: 10.11896/jsjkx.220800118. [4] E W N, YU B. The Deep Ritz Method: a deep learning-based numerical algorithm for solving variational problems[J]. Communications in Mathematics and Statistics, 2018, 6(1): 1-12. DOI: 10.1007/s40304-018-0127-z. [5] LONG Z C, LU Y P, DONG B. PDE-Net 2.0: learning PDEs from data with a numeric-symbolic hybrid deep network[J]. Journal of Computational Physics, 2019, 399: 108925. DOI: 10.1016/j.jcp.2019.108925. [6] LI Z Y, KOVACHKI N, AZIZZADENESHELI K, et al. Fourier neural operator for parametric partial differential equations[EB/OL]. (2021-05-17)[2024-06-01]. https://arxiv.org/abs/2010.08895. DOI: 10.48550/arXiv.2010.08895. [7] RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. DOI: 10.1016/j.jcp.2018.10.045. [8] 高飞,郭晓斌,袁冬芳,等.改进PINNs方法求解边界层对流占优扩散方程[J].广西师范大学学报(自然科学版),2023,41(6): 33-50. DOI: 10.16088/j.issn.1001-6600.2023032203. [9] LU L, MENG X H, MAO Z P, et al. DeepXDE: a deep learning library for solving differential equations[J]. SIAM Review, 2021, 63(1): 208-228. DOI: 10.1137/19M1274067. [10] JAGTAP A D, KARNIADAKIS G E. Extended physics-informed neural networks (XPINNs): a generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations[J]. Communications in Computational Physics, 2020, 28(5): 2002-2041. DOI: 10.4208/cicp.oa-2020-0164. [11] YU J, LU L, MENG X H, et al. Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 393: 114823. DOI: 10.1016/j.cma.2022.114823. [12] LU L, JIN P Z, PANG G F, et al. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators[J]. Nature Machine Intelligence, 2021, 3(3): 218-229. DOI: 10.1038/S42256-021-00302-5. [13] FENG D Y, TAN Z L, HE Q Z. Physics-informed neural networks of the Saint-Venant equations for downscaling a large-scale river model[J]. Water Resources Research, 2023, 59(2): e2022WR033168. DOI: 10.1029/2022WR033168. [14] 方卫华,徐孟启.基于PINNs的圣维南方程组数据同化方法[J].水资源保护,2023,39(3): 24-31,64. DOI: 10.3880/j.issn.1004-6933.2023.03.004. [15] NAZARI L F, CAMPONOGARA E, SEMAN L O. Physics-informed neural networks for modeling water flows in a river channel[J]. IEEE Transactions on Artificial Intelligence, 2024, 5(3): 1001-1015. DOI: 10.1109/TAI.2022.3200028. [16] ZHAO Z Y, DING X Y, PRAKASH B A. PINNsFormer: a transformer-based framework for physics-informed neural networks[EB/OL]. (2024-05-07)[2024-06-01]. https://arxiv.org/abs/2307.11833. DOI: 10.48550/arXiv.1804.02767. [17] 田晟,胡啸.基于Transformer模型的车辆轨迹预测[J].广西师范大学学报(自然科学版),2024,42(3): 47-58. DOI: 10.16088/j.issn.1001-6600.2023061203. [18] WONG J C, OOI C C, GUPTA A, et al. Learning in sinusoidal spaces with physics-informed neural networks[J]. IEEE Transactions on Artificial Intelligence, 2024, 5(3): 985-1000. DOI: 10.1109/TAI.2022.3192362. [19] BU J, KARPATNE A. Quadratic residual networks: a new class of neural networks for solving forward and inverse problems in physics involving PDEs[C]//Proceedings of the 2021 SIAM International Conference on Data Mining (SDM). Philadelphia, PA: Society for Industrial and Applied Mathematics, 2021: 675-683. DOI: 10.1137/1.9781611976700.76. [20] DE ALMEIDAG A M, PAUL B. Applicability of the local inertial approximation of the shallow water equations to flood modeling[J]. Water Resources Research, 2013,49(8): 4833-4844. DOI: 10.1002/wrcr.20366. [21] HUNTER N M, HORRITT M S, BATES P D, et al. An adaptive time step solution for raster-based storage cell modelling of floodplain inundation[J]. Advances in Water Resources, 2005, 28(9): 975-991. DOI: 10.1016/j.advwatres.2005.03.007. |
| [1] | TIAN Sheng, XIONG Chenyin, LONG Anyang. Point Cloud Classification Method of Urban Roads Based on Improved PointNet++ [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 1-14. |
| [2] | SHI Tianyi, NAN Xinyuan, GUO Xiangyu, ZHAO Pu, CAI Xin. Improved ConvNeXt-based Algorithm for Apple Leaf Disease Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 83-96. |
| [3] | WANG Xuyang, ZHANG Jiayu. Temporal Multimodal Sentiment Analysis with Cross-Modal Augmentation Networks [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 97-107. |
| [4] | LU Zhanyue, CHEN Yanping, YANG Weizhe, HUANG Ruizhang, QIN Yongbin. Relational Extraction Method Based on Mask Attention and Multi-feature Convolutional Networks [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 12-22. |
| [5] | GUO Xiangyu, SHI Tianyi, CHEN Yannan, NAN Xinyuan, CAI Xin. Research on Foreign Object Detection in Railway Overhead Contact System Based on YOLO-CDBW Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 56-69. |
| [6] | SU Chunhai, XIA Haiying. Facial Expression Recognition Based on Noise-Resistant Dual Constraint Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 70-82. |
| [7] | LIU Yuna, MA Shuangbao. Fabric Defect Detection Based on Improved Lightweight YOLOv8n [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 83-94. |
| [8] | DAI Linhua, LI Yuansong, SHI Rui, HE Zhongliang, LI Lei. HSED-YOLO: A Lightweight Model for Detecting Surface Defects in Strip Steel [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 95-106. |
| [9] | YU Kuai, SONG Baogui, SHAO Pan, YU Ao. Hierarchical-scale Interaction-based U-Net for Remote Sensing Image Building Extraction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 121-132. |
| [10] | LU Jiahui, CHEN Qingfeng, WANG Wenguang, YU Qian, HE Naixu, HAN Zongzhao. Multi-scale Attention Learning for Abdomen Multi-organ Image Segmentation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 138-148. |
| [11] | DU Shuaiwen, JIN Ting. A Deep Hybrid Recommendation Algorithm Based on User Behavior Characteristics [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 91-100. |
| [12] | TIAN Sheng, HU Xiao. Vehicle Trajectory Prediction Based on Transformer Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 47-58. |
| [13] | XIAO Yuting, LÜ Xiaoqi, GU Yu, LIU Chuanqiang. Classification of Diabetic Retinopathy Based on Split Residual Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 91-101. |
| [14] | XI Lingfei, Yilihamu Yaermaimaiti, LIU Yajie. Surface Defect Detection Method for Aluminum Profile Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 111-119. |
| [15] | ZHAO Wei, TIAN Shuai, ZHANG Qiang, WANG Yaoshen, WANG Sibo, SONG Jiang. Fritillaria ussuriensis Maxim Detection Model Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 22-32. |
|