Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (4): 147-156.doi: 10.16088/j.issn.1001-6600.2024041702

• Ecology and Environmental Science Research • Previous Articles     Next Articles

Preparation and Characterization of Phenolic Resin/Bamboo Based Composite Activated Carbon for Supercapacitors

WEN Xiuchan1, ZHANG Bo1, WANG Xi1, GUI Liucheng2, HUANG Siyu1,3*, HE Mingyan1,3*   

  1. 1. School of Environment and Resources, Guangxi Normal University, Guilin Guangxi 541006, China;
    2. School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin Guangxi 541006, China;
    3. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China
  • Received:2024-04-17 Revised:2024-05-20 Online:2025-07-05 Published:2025-07-14

Abstract: To investigate the effect of phenolic resin addition on the microstructure and electrochemical properties of carbon materials, and to obtain a relatively economical method of preparing carbon materials for supercapacitors, phenolic resin/bamboo based composite activated carbon was prepared by KOH activation using bamboo waste as raw material and phenolic resin as modifier. The results showed that the microstructure of the composite activated carbon was affected by the addition of phenolic resin. The specific surface area and total pore volume of the composite activated carbon with the resin addition of 15%~35% increased. The average pore diameter decreased, providing more adsorption sites for storage charge. The specific surface area and total pore volume of the composite activated carbon were increased by 28.5% and 29.2%, respectively, and the average pore size was reduced to 1.78 nm compared with that of the bamboo-based activated carbon when 35% of phenolic resin was added; the specific capacitance at a current density of 0.5 A·g-1 reached 263.85 F·g-1, which was 53.3% higher than bamboo activated carbon. The results indicated that the electrochemical properties of activated carbon prepared by adding phenolic resin were obviously improved.

Key words: composite activated carbon, phenolic resin, bamboo-based, adjustable, microstructure, supercapacitor, electrochemical performance

CLC Number:  TQ424.19;TM533
[1] 赵晓玲,曾丹林,黄刚,等.生物质多孔碳的制备、掺杂及应用[J].化工新型材料,2023,51(7):49-54. DOI: 10.19817/j.cnki.issn1006-3536.2023.07.009.
[2] 曾建强,何明基,李庆余,等.中间相炭微球改性聚苯胺超级电容器电极材料研究[J].广西师范大学学报(自然科学版),2017,35(4):84-90. DOI: 10.16088/j.issn.1001-6600.2017.04.012.
[3] DUBEY R, GURUVIAH V. Review of carbon-based electrode materials for supercapacitor energy storage[J]. Ionics, 2019, 25(4): 1419-1445. DOI: 10.1007/s11581-019-02874-0.
[4] 于娜林,樊丽华,王雪宇,等.添加松木屑对无灰煤基活性炭结构和电化学性能的影响[J].煤炭转化,2023,46(2): 45-52. DOI: 10.19726/j.cnki.ebcc.202302006.
[5] 辛凡文,高山松,郑伦.高温喷雾法制备超级电容器用球形活性炭的研究[J].煤炭工程,2022,54(11):177-181. DOI: 10.11799/ce202211031.
[6] 丁苏雅,马姜明,覃云斌,等.生物炭对毛竹林土壤有机碳组分及碳库管理指数的影响[J].广西师范大学学报(自然科学版),2024,42(1):180-190. DOI: 10.16088/j.issn.1001-6600.2023020701.
[7] 邱书伟,马琰,吴蕾,等.棉秸秆制备活性炭及其电化学性能[J].化工新型材料,2019,47(4):249-253,257.
[8] AI T, WANG Z, ZHANG H R, et al. Novel synthesis of nitrogen-containing bio-phenol resin and its molten salt activation of porous carbon for supercapacitor electrode[J]. Materials, 2019, 12(12): 1986. DOI: 10.3390/ma12121986.
[9] 吴泽轶,周奇,文博,等.炭材料在锂离子电池负极材料钛酸锂中的应用[J].炭素技术,2020,39(6):6-13,25. DOI: 10.14078/j.cnki.1001-3741.2020.06.002.
[10] 曹俊雅,陈天悦,罗晨辉,等.超级电容器用生物质衍生多孔炭材料研究进展[J].洁净煤技术,2024,30(2):153-174. DOI: 10.13226/j.issn.1006-6772.KD23111002.
[11] 田学坤,王霞,苏凯,等.生物质材料炭化的研究进展及其应用展望[J].工程科学学报,2023,45(12):2026-2036. DOI: 10.13374/j.issn2095-9389.2022.11.11.005.
[12] HUANG W H, LEE D J, HUANG C. Modification on biochars for applications: a research update[J]. Bioresource Technology, 2021, 319: 124100. DOI: 10.1016/j.biortech.2020.124100.
[13] YANG P J, LI T H, LI H, et al. Progress in the graphitization and applications of modified resin carbons[J]. New Carbon Materials, 2023, 38(1): 96-108. DOI: 10.1016/S1872-5805(23)60715-2.
[14] CAI J T, HOU L H, CHEN C, et al. Facile 3D nitrogen-doped hierarchical porous carbon for high-performance supercapacitors[J]. Energy Technology, 2022, 10(10): 2200508. DOI: 10.1002/ente.202200508.
[15] DU X, WANG C Y, CHEN M M, et al. Effects of carbonization temperature on microstructure and electrochemical performances of phenolic resin-based carbon spheres[J]. Journal of Physics and Chemistry of Solids, 2010, 71(3): 214-218. DOI: 10.1016/j.jpcs.2009.11.007.
[16] XIA D, TAN F, ZHANG C P, et al. ZnCl2-activated biochar from biogas residue facilitates aqueous As(III) removal[J]. Applied Surface Science, 2016, 377: 361-369. DOI: 10.1016/j.apsusc.2016.03.109.
[17] LI W, ZHANG L B, PENG J H, et al. Preparation of high surface area activated carbons from tobacco stems with K2CO3 activation using microwave radiation[J]. Industrial Crops and Products, 2008, 27(3): 341-347. DOI: 10.1016/j.indcrop.2007.11.011.
[18] JI L K, ZHANG Y Q, LI X P, et al. Coral-like interconnected porous carbon derived from phenolic resin/ammonium alginate composite for high-rate supercapacitor[J]. Journal of Power Sources, 2023, 573: 232933. DOI: 10.1016/j.jpowsour.2023.232933.
[19] GUAN M J, WANG G N, YONG C, et al. A novel composite hard carbon from waste Camellia oleifera shell modified by phenol-formaldehyde resin for supercapacitor electrode with high specific capacitance[J]. Diamond and Related Materials, 2023, 138: 110248. DOI: 10.1016/j.diamond.2023.110248.
[20] LI W, WANG G H, SUI W J, et al. Facile and scalable preparation of cage-like mesoporous carbon from lignin-based phenolic resin and its application in supercapacitor electrodes[J]. Carbon, 2022, 196: 819-827. DOI: 10.1016/j.carbon.2022.05.053.
[21] ZHANG Z Q, LI Y D, YANG X M, et al. In-situ confined construction of N-doped compact bamboo charcoal composites for supercapacitors[J]. Journal of Energy Storage, 2023, 62: 106954. DOI: 10.1016/j.est.2023.106954.
[22] YU H, MIKŠÍK F, THU K, et al. Characterization and optimization of pore structure and water adsorption capacity in pinecone-derived activated carbon by steam activation[J]. Powder Technology, 2024,431: 119084. DOI: 10.1016/j.powtec.2023.119084.
[23] 梁淼,张明建,鲁端峰,等.热解温度对竹粉炭理化结构及燃烧性能的影响[J].化工进展,2020,39(1):278-286. DOI: 10.16085/j.issn.1000-6613.2019-0564.
[24] LIU D, LIU Y L, XU G Y, et al. Precisely tuning porosity and outstanding supercapacitor performance of phenolic resin-based carbons via citrate activation[J]. Journal of Energy Storage, 2023, 67: 107610. DOI: 10.1016/j.est.2023.107610.
[25] LOGANATHAN N N, PERUMAL V, PANDIAN B R, et al. Recent studies on polymeric materials for supercapacitor development[J]. Journal of Energy Storage, 2022,49: 104149. DOI: 10.1016/j.est.2022.104149.
[26] HUANG J, XIE Y P, YOU Y, et al. Rational design of electrode materials for advanced supercapacitors: from lab research to commercialization[J]. Advanced Functional Materials, 2023, 33(14): 2213095. DOI: 10.1002/adfm.202213095.
[27] NGUYEN T B, YOON B, NGUYEN T D, et al. A facile salt-templating synthesis route of bamboo-derived hierarchical porous carbon for supercapacitor applications[J]. Carbon, 2023, 206: 383-391. DOI: 10.1016/j.carbon.2023.02.060.
[28] PANG X N, CAO M, QIN J H, et al. Synthesis of bamboo-derived porous carbon: exploring structure change, pore formation and supercapacitor application[J]. Journal of Porous Materials, 2022, 29(2): 559-569. DOI: 10.1007/s10934-021-01181-2.
[29] 王希涛,石春杰,王康.一种酚醛树脂基多孔活性炭小球的制备[J].天津大学学报(自然科学与工程技术版),2018,51(4):389-394. DOI: 10.11784/tdxbz201703029.
[30] 黄坤,许明,吴秀娟,等.生物质活性炭的制备与微结构特性调控研究进展[J].化工进展,2024,43(5):2475-2493. DOI: 10.16085/j.issn.1000-6613.2023-2121.
[31] 李振,尚颖泽,朱张磊,等.煤基碳材料制备与电化学储能应用[J].洁净煤技术,2024,30(5):99-117. DOI: 10.13226/j.issn.1006-6772.23032902.
[32] 钱黎黎,王彦鑫,倪俊,等.生物质水热炭改性方法及应用研究进展[J].煤炭学报,2023,48(6):2279-2290. DOI: 10.13225/j.cnki.jccs.be22.1853.
[33] LI L F, CHANG J M, CAI L P, et al. Activated carbon monolith derived from polymer and fast pyrolyticchar: effect of bio-oil phenol-formaldehyde resin[J]. BioResources, 2017, 12(4): 7975-7985. DOI: 10.15376/biores.12.4.7975-7985.
[34] YANG C S, JANG Y S, JEONG H K. Bamboo-based activated carbon for supercapacitor applications[J]. Current Applied Physics, 2014, 14(12): 1616-1620. DOI: 10.1016/j.cap.2014.09.021.
[35] KUMAR JHA M, SHAH D, MULMI P, et al. Development of activated carbon from bhang (Cannabis) stems for supercapacitor electrodes[J]. Materials Letters, 2023, 344: 134436. DOI: 10.1016/j.matlet.2023.134436.
[36] IRO Z S, SUBRAMANI C, DASH S S. A brief review on electrode materials for supercapacitor[J]. International Journal of Electrochemical Science, 2016, 11(12): 10628-10643. DOI: 10.20964/2016.12.50.
[37] ROSENDAHL S M, BURGESS I J. Electrochemical and infrared spectroscopy studies of 4-mercaptobenzoic acid SAMs on gold surfaces[J]. Electrochimica Acta, 2008, 53(23): 6759-6767. DOI: 10.1016/j.electacta.2007.11.020.
[38] 续士勇,岳劲松,程园,等.褐煤基活性炭的制备及其电化学性能研究[J].煤炭转化,2023,46(1):62-71. DOI: 10.19726/j.cnki.ebcc.202301008.
[39] LIU Y P, ZHAO J L, SONG Y F, et al. Preparation of N-doped porous carbon nanofibers derived from their phenolic-resin-based analogues for high performance supercapacitor[J]. Journal of Electroanalytical Chemistry, 2022, 925: 116869. DOI: 10.1016/j.jelechem.2022.116869.
[40] ZOU Y L, WANG H F, XU L F, et al. Synergistic effect of CO2 and H2O co-activation of Zhundong coal at a low burn-off rate on high performance supercapacitor[J]. Journal of Power Sources, 2023, 556: 232509. DOI: 10.1016/j.jpowsour.2022.232509.
[41] 周琰,胡丽娟,岑美香,等.茶渣衍生多级孔炭的电化学和吸附性能研究[J].稀有金属,2022,46(10):1340-1351. DOI: 10.13373/j.cnki.cjrm.XY22060013.
[42] 刘芳芳,张富硕,孙力,等.磷酸三钾活化合成分级多孔炭及其电化学性能[J].硅酸盐学报,2024,52(5):1631-1642. DOI: 10.14062/j.issn.0454-5648.20230604.
[43] LI X, LI Y L, TIAN X D, et al. Flexible and cross-linked carbon nanofibers based on coal liquefaction residue forhigh rate supercapacitors[J]. Journal of Alloys and Compounds, 2022, 903: 163919. DOI: 10.1016/j.jallcom.2022.163919.
[44] HO H C, NGUYEN N A, MEEK K M, et al. A solvent-free synthesis of lignin-derived renewable carbon with tunable porosity for supercapacitor electrodes[J]. ChemSusChem, 2018, 11(17): 2953-2959. DOI: 10.1002/cssc.201800929.
[45] ZHANG G X, CHEN Y M, CHEN Y G, et al. Activated biomass carbon made from bamboo as electrode material for supercapacitors[J]. Materials Research Bulletin, 2018, 102: 391-398. DOI: 10.1016/j.materresbull.2018.03.006.
[1] QIN Ronghua, SU Chengyuan, LU Xinya, CHEN Zhengpeng, ZHOU Yijie, XIAN Yunchuan. Effects of Cr(Ⅵ) Concentration on the Performance and Microecology of MFC-Granular Sludge Coupling System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 242-254.
[2] ZENG Jianqiang, HE Mingji, LI Qingyu, HUANG Hanxing,DING Xuexue, MAO Quanyuan, ZHONG Xinxian. Polyaniline Electrode Materials Modified by MesocarbonMicrobead for Supercapacitor [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(4): 84-90.
[3] XIE Meng-na, WANG Mei, LIU Zheng-hong. A Power-Adjustable Method for RFID-based Dynamic Positioning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(2): 49-55.
[4] ZOU Qi-jie, ZHANG Ru-bo. Framework of Unmanned System with Adjustable Autonomy [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(3): 191-197.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HE Ankang, CHEN Yanping, HU Ying, HUANG Ruizhang, QIN Yongbin. Fusing Boundary Interaction Information for Named Entity Recognition[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 1 -11 .
[2] LU Zhanyue, CHEN Yanping, YANG Weizhe, HUANG Ruizhang, QIN Yongbin. Relational Extraction Method Based on Mask Attention and Multi-feature Convolutional Networks[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 12 -22 .
[3] QI Dandan, WANG Changzheng, GUO Shaoru, YAN Zhichao, HU Zhiwei, SU Xuefeng, MA Boxiang, LI Shizhao, LI Ru. Topic-based Multi-view Entity Representation for Zero-Shot Entity Retrieval[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 23 -34 .
[4] HUANG Chuanyang, CHENG Can’er, LI Songwei, CHENG Hongdong, ZHANG Qiunan, ZHANG Zhao, SHAO Laipeng, TANG Jian, WANG Yongmei, GUO Kuikui, LU Hanglin, HU Junhui. Study on Temperature Sensing Characteristics of Long Period Fiber Grating with Coating Layer[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 35 -42 .
[5] TIAN Sheng, XIONG Chenyin, LONG Anyang. Point Cloud Classification Method of Urban Roads Based on Improved PointNet++[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 1 -14 .
[6] LI Zongxiao, ZHANG Jian, LUO Xinyue, ZHAO Yifei, LU Fei. Research on Arrival Trajectory Prediction Based on K-means and Adam-LSTM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 15 -23 .
[7] SONG Mingkai, ZHU Chengjie. Research on Fault Location of Distribution Network Based on H-WOA-GWO and Region Correction Strategies[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 24 -37 .
[8] CHEN Yu, CHEN Lei, ZHANG Yi, ZHANG Zhirui. Wind Speed Prediction Model Based on QMD-LDBO-BiGRU[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 38 -57 .
[9] HAN Shuo, JIANG Linfeng, YANG Jianbin. Attention-based PINNs Method for Solving Saint-Venant Equations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 58 -68 .
[10] LI Zhixin, KUANG Wenlan. Fine-grained Image Classification Combining Adaptive Spatial Mutual Attention and Feature Pair Integration Discrimination[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 69 -82 .