Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (4): 147-156.doi: 10.16088/j.issn.1001-6600.2024041702
• Ecology and Environmental Science Research • Previous Articles Next Articles
WEN Xiuchan1, ZHANG Bo1, WANG Xi1, GUI Liucheng2, HUANG Siyu1,3*, HE Mingyan1,3*
| [1] 赵晓玲,曾丹林,黄刚,等.生物质多孔碳的制备、掺杂及应用[J].化工新型材料,2023,51(7):49-54. DOI: 10.19817/j.cnki.issn1006-3536.2023.07.009. [2] 曾建强,何明基,李庆余,等.中间相炭微球改性聚苯胺超级电容器电极材料研究[J].广西师范大学学报(自然科学版),2017,35(4):84-90. DOI: 10.16088/j.issn.1001-6600.2017.04.012. [3] DUBEY R, GURUVIAH V. Review of carbon-based electrode materials for supercapacitor energy storage[J]. Ionics, 2019, 25(4): 1419-1445. DOI: 10.1007/s11581-019-02874-0. [4] 于娜林,樊丽华,王雪宇,等.添加松木屑对无灰煤基活性炭结构和电化学性能的影响[J].煤炭转化,2023,46(2): 45-52. DOI: 10.19726/j.cnki.ebcc.202302006. [5] 辛凡文,高山松,郑伦.高温喷雾法制备超级电容器用球形活性炭的研究[J].煤炭工程,2022,54(11):177-181. DOI: 10.11799/ce202211031. [6] 丁苏雅,马姜明,覃云斌,等.生物炭对毛竹林土壤有机碳组分及碳库管理指数的影响[J].广西师范大学学报(自然科学版),2024,42(1):180-190. DOI: 10.16088/j.issn.1001-6600.2023020701. [7] 邱书伟,马琰,吴蕾,等.棉秸秆制备活性炭及其电化学性能[J].化工新型材料,2019,47(4):249-253,257. [8] AI T, WANG Z, ZHANG H R, et al. Novel synthesis of nitrogen-containing bio-phenol resin and its molten salt activation of porous carbon for supercapacitor electrode[J]. Materials, 2019, 12(12): 1986. DOI: 10.3390/ma12121986. [9] 吴泽轶,周奇,文博,等.炭材料在锂离子电池负极材料钛酸锂中的应用[J].炭素技术,2020,39(6):6-13,25. DOI: 10.14078/j.cnki.1001-3741.2020.06.002. [10] 曹俊雅,陈天悦,罗晨辉,等.超级电容器用生物质衍生多孔炭材料研究进展[J].洁净煤技术,2024,30(2):153-174. DOI: 10.13226/j.issn.1006-6772.KD23111002. [11] 田学坤,王霞,苏凯,等.生物质材料炭化的研究进展及其应用展望[J].工程科学学报,2023,45(12):2026-2036. DOI: 10.13374/j.issn2095-9389.2022.11.11.005. [12] HUANG W H, LEE D J, HUANG C. Modification on biochars for applications: a research update[J]. Bioresource Technology, 2021, 319: 124100. DOI: 10.1016/j.biortech.2020.124100. [13] YANG P J, LI T H, LI H, et al. Progress in the graphitization and applications of modified resin carbons[J]. New Carbon Materials, 2023, 38(1): 96-108. DOI: 10.1016/S1872-5805(23)60715-2. [14] CAI J T, HOU L H, CHEN C, et al. Facile 3D nitrogen-doped hierarchical porous carbon for high-performance supercapacitors[J]. Energy Technology, 2022, 10(10): 2200508. DOI: 10.1002/ente.202200508. [15] DU X, WANG C Y, CHEN M M, et al. Effects of carbonization temperature on microstructure and electrochemical performances of phenolic resin-based carbon spheres[J]. Journal of Physics and Chemistry of Solids, 2010, 71(3): 214-218. DOI: 10.1016/j.jpcs.2009.11.007. [16] XIA D, TAN F, ZHANG C P, et al. ZnCl2-activated biochar from biogas residue facilitates aqueous As(III) removal[J]. Applied Surface Science, 2016, 377: 361-369. DOI: 10.1016/j.apsusc.2016.03.109. [17] LI W, ZHANG L B, PENG J H, et al. Preparation of high surface area activated carbons from tobacco stems with K2CO3 activation using microwave radiation[J]. Industrial Crops and Products, 2008, 27(3): 341-347. DOI: 10.1016/j.indcrop.2007.11.011. [18] JI L K, ZHANG Y Q, LI X P, et al. Coral-like interconnected porous carbon derived from phenolic resin/ammonium alginate composite for high-rate supercapacitor[J]. Journal of Power Sources, 2023, 573: 232933. DOI: 10.1016/j.jpowsour.2023.232933. [19] GUAN M J, WANG G N, YONG C, et al. A novel composite hard carbon from waste Camellia oleifera shell modified by phenol-formaldehyde resin for supercapacitor electrode with high specific capacitance[J]. Diamond and Related Materials, 2023, 138: 110248. DOI: 10.1016/j.diamond.2023.110248. [20] LI W, WANG G H, SUI W J, et al. Facile and scalable preparation of cage-like mesoporous carbon from lignin-based phenolic resin and its application in supercapacitor electrodes[J]. Carbon, 2022, 196: 819-827. DOI: 10.1016/j.carbon.2022.05.053. [21] ZHANG Z Q, LI Y D, YANG X M, et al. In-situ confined construction of N-doped compact bamboo charcoal composites for supercapacitors[J]. Journal of Energy Storage, 2023, 62: 106954. DOI: 10.1016/j.est.2023.106954. [22] YU H, MIKÍK F, THU K, et al. Characterization and optimization of pore structure and water adsorption capacity in pinecone-derived activated carbon by steam activation[J]. Powder Technology, 2024,431: 119084. DOI: 10.1016/j.powtec.2023.119084. [23] 梁淼,张明建,鲁端峰,等.热解温度对竹粉炭理化结构及燃烧性能的影响[J].化工进展,2020,39(1):278-286. DOI: 10.16085/j.issn.1000-6613.2019-0564. [24] LIU D, LIU Y L, XU G Y, et al. Precisely tuning porosity and outstanding supercapacitor performance of phenolic resin-based carbons via citrate activation[J]. Journal of Energy Storage, 2023, 67: 107610. DOI: 10.1016/j.est.2023.107610. [25] LOGANATHAN N N, PERUMAL V, PANDIAN B R, et al. Recent studies on polymeric materials for supercapacitor development[J]. Journal of Energy Storage, 2022,49: 104149. DOI: 10.1016/j.est.2022.104149. [26] HUANG J, XIE Y P, YOU Y, et al. Rational design of electrode materials for advanced supercapacitors: from lab research to commercialization[J]. Advanced Functional Materials, 2023, 33(14): 2213095. DOI: 10.1002/adfm.202213095. [27] NGUYEN T B, YOON B, NGUYEN T D, et al. A facile salt-templating synthesis route of bamboo-derived hierarchical porous carbon for supercapacitor applications[J]. Carbon, 2023, 206: 383-391. DOI: 10.1016/j.carbon.2023.02.060. [28] PANG X N, CAO M, QIN J H, et al. Synthesis of bamboo-derived porous carbon: exploring structure change, pore formation and supercapacitor application[J]. Journal of Porous Materials, 2022, 29(2): 559-569. DOI: 10.1007/s10934-021-01181-2. [29] 王希涛,石春杰,王康.一种酚醛树脂基多孔活性炭小球的制备[J].天津大学学报(自然科学与工程技术版),2018,51(4):389-394. DOI: 10.11784/tdxbz201703029. [30] 黄坤,许明,吴秀娟,等.生物质活性炭的制备与微结构特性调控研究进展[J].化工进展,2024,43(5):2475-2493. DOI: 10.16085/j.issn.1000-6613.2023-2121. [31] 李振,尚颖泽,朱张磊,等.煤基碳材料制备与电化学储能应用[J].洁净煤技术,2024,30(5):99-117. DOI: 10.13226/j.issn.1006-6772.23032902. [32] 钱黎黎,王彦鑫,倪俊,等.生物质水热炭改性方法及应用研究进展[J].煤炭学报,2023,48(6):2279-2290. DOI: 10.13225/j.cnki.jccs.be22.1853. [33] LI L F, CHANG J M, CAI L P, et al. Activated carbon monolith derived from polymer and fast pyrolyticchar: effect of bio-oil phenol-formaldehyde resin[J]. BioResources, 2017, 12(4): 7975-7985. DOI: 10.15376/biores.12.4.7975-7985. [34] YANG C S, JANG Y S, JEONG H K. Bamboo-based activated carbon for supercapacitor applications[J]. Current Applied Physics, 2014, 14(12): 1616-1620. DOI: 10.1016/j.cap.2014.09.021. [35] KUMAR JHA M, SHAH D, MULMI P, et al. Development of activated carbon from bhang (Cannabis) stems for supercapacitor electrodes[J]. Materials Letters, 2023, 344: 134436. DOI: 10.1016/j.matlet.2023.134436. [36] IRO Z S, SUBRAMANI C, DASH S S. A brief review on electrode materials for supercapacitor[J]. International Journal of Electrochemical Science, 2016, 11(12): 10628-10643. DOI: 10.20964/2016.12.50. [37] ROSENDAHL S M, BURGESS I J. Electrochemical and infrared spectroscopy studies of 4-mercaptobenzoic acid SAMs on gold surfaces[J]. Electrochimica Acta, 2008, 53(23): 6759-6767. DOI: 10.1016/j.electacta.2007.11.020. [38] 续士勇,岳劲松,程园,等.褐煤基活性炭的制备及其电化学性能研究[J].煤炭转化,2023,46(1):62-71. DOI: 10.19726/j.cnki.ebcc.202301008. [39] LIU Y P, ZHAO J L, SONG Y F, et al. Preparation of N-doped porous carbon nanofibers derived from their phenolic-resin-based analogues for high performance supercapacitor[J]. Journal of Electroanalytical Chemistry, 2022, 925: 116869. DOI: 10.1016/j.jelechem.2022.116869. [40] ZOU Y L, WANG H F, XU L F, et al. Synergistic effect of CO2 and H2O co-activation of Zhundong coal at a low burn-off rate on high performance supercapacitor[J]. Journal of Power Sources, 2023, 556: 232509. DOI: 10.1016/j.jpowsour.2022.232509. [41] 周琰,胡丽娟,岑美香,等.茶渣衍生多级孔炭的电化学和吸附性能研究[J].稀有金属,2022,46(10):1340-1351. DOI: 10.13373/j.cnki.cjrm.XY22060013. [42] 刘芳芳,张富硕,孙力,等.磷酸三钾活化合成分级多孔炭及其电化学性能[J].硅酸盐学报,2024,52(5):1631-1642. DOI: 10.14062/j.issn.0454-5648.20230604. [43] LI X, LI Y L, TIAN X D, et al. Flexible and cross-linked carbon nanofibers based on coal liquefaction residue forhigh rate supercapacitors[J]. Journal of Alloys and Compounds, 2022, 903: 163919. DOI: 10.1016/j.jallcom.2022.163919. [44] HO H C, NGUYEN N A, MEEK K M, et al. A solvent-free synthesis of lignin-derived renewable carbon with tunable porosity for supercapacitor electrodes[J]. ChemSusChem, 2018, 11(17): 2953-2959. DOI: 10.1002/cssc.201800929. [45] ZHANG G X, CHEN Y M, CHEN Y G, et al. Activated biomass carbon made from bamboo as electrode material for supercapacitors[J]. Materials Research Bulletin, 2018, 102: 391-398. DOI: 10.1016/j.materresbull.2018.03.006. |
| [1] | QIN Ronghua, SU Chengyuan, LU Xinya, CHEN Zhengpeng, ZHOU Yijie, XIAN Yunchuan. Effects of Cr(Ⅵ) Concentration on the Performance and Microecology of MFC-Granular Sludge Coupling System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 242-254. |
| [2] | ZENG Jianqiang, HE Mingji, LI Qingyu, HUANG Hanxing,DING Xuexue, MAO Quanyuan, ZHONG Xinxian. Polyaniline Electrode Materials Modified by MesocarbonMicrobead for Supercapacitor [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(4): 84-90. |
| [3] | XIE Meng-na, WANG Mei, LIU Zheng-hong. A Power-Adjustable Method for RFID-based Dynamic Positioning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(2): 49-55. |
| [4] | ZOU Qi-jie, ZHANG Ru-bo. Framework of Unmanned System with Adjustable Autonomy [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(3): 191-197. |
|