Journal of Guangxi Normal University(Natural Science Edition) ›› 2017, Vol. 35 ›› Issue (4): 84-90.doi: 10.16088/j.issn.1001-6600.2017.04.012

Previous Articles     Next Articles

Polyaniline Electrode Materials Modified by MesocarbonMicrobead for Supercapacitor

ZENG Jianqiang1,2,3, HE Mingji1,2,3, LI Qingyu1,2,3, HUANG Hanxing1,2,3,DING Xuexue1,2,3, MAO Quanyuan1,2,3, ZHONG Xinxian1,2,3*   

  1. 1. School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin Guangxi 541004, China;
    2.State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guilin Guangxi 541004,China;
    3. Guangxi Key Laboratory of Low Carbon Energy Materials, Guilin Guangxi 541004, China
  • Online:2017-07-25 Published:2018-07-25

Abstract: In this paper, polyaniline/activated mesocarbon microbeads (PANI/A-MCMB) composite material was obtained through in-situ chemical polymerization of aniline by using activated mesocarbon microbeads (MCMB) as substrate and ammonium peroxydisulfate (APS) as oxidizing agent. The morphology and structure of prepared PANI/A-MCMB composite material was characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD). A symmetric redox supercapacitor was assembled with PANI/A-MCMB composite as active electrode material and 1.0 mol/L H2SO4 aqueous solution as electrolyte, and the electrochemical properties of this PANI/A-MCMB supercapacitor were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/ discharge tests. The experimental results show that the single specific capacitance of PANI/A-MCMB composite materials is 301.6 F/g at current density for 0.1 A/g, the specific capacitance is 276.3 F/g and the capacity retention is 91.6 % after 1 000 charge/discharge cycles. PANI/A-MCMB composite materials have higher specific capacity and better cyclic stability than PANI electrode materials whose single specific capacitance of PANI is only 228 F/g and the capacity retention is 39.5% after 1 000 charge/discharge cycles.

Key words: polyaniline, mesocarbon microbeads, in-situ chemical polymerization, supercapacitor

CLC Number: 

  • TQ050. 425
[1] SHEN J, LI X, LIU W, et al. An asymmetric supercapacitor with both ultra-high gravimetric and volumetric energy density based on 3D Ni(OH)2/MnO2@Carbon nanotube and activated polyaniline-derived carbon[J]. Acs Applied Materials and Interfaces, 2017, 9(1):668. DOI: 10.1021/acsami.6b12370
[2] KE F, LIU Y, XU H,et al. Flower-like polyaniline/graphene hybrids for high-performance supercapacitor[J]. Composites Science and Technology, 2017, 142:286-293. DOI:10.1016/j.compscitech.2017.02.026
[3] YU T, ZHU P, XIONG Y, et al. Synthesis of microspherical polyaniline/graphene composites and their application in supercapacitors[J]. Electrochimica Acta, 2016, 222:12-19. DOI:10.1016/j.electacta.2016.11.033
[4] CHEN S M, RASU R, VEERAPPAN M, et al. Recent advancements in electrode materials for the high-performance electrochemical supercapacitors: a review[J]. International Journal of Electrochemical Science, 2014, 9(8):4072-4085.
[5] CHEN J, SONG J, FENG X. Facile synthesis of graphene/polyaniline composite hydrogel for high-performance supercapacitor[J]. Polymer Bulletin, 2017,74(1):27-37. DOI: 10.1007/s00289-016-1695-2
[6] GONZLEZ A, GOIKOLEA E, BARRENA J A, et al. Review on supercapacitors: Technologies and materials[J]. Renewable and Sustainable Energy Reviews, 2016, 58:1189-1206. DOI:10.1016/j.rser.2015.12.249
[7] 丛文博, 黄震雷, 张宝宏. 有机电解液聚苯胺—炭混合电容器性能研究[J]. 电子元件与材料, 2007, 26(8): 46-51. DOI:10.14106/j.cnki.1001-2028.2007.08.006
[8] 钟新仙, 王芳平, 李庆余, 等. 不同氧化剂制备的聚苯胺电化学性能研究[J]. 电源技术, 2009, 33(9):781-783.
[9] DENG J, WANG T, GUO J, et al. Electrochemical capacity fading of polyaniline electrode in supercapacitor: An XPS analysis[J]. Progress in Natural Science Materials International, 2017,27(2):257-260. DOI:10.1016/j.pnsc.2017.02.007
[10] KE F, LIU Y, XU H, et al. Flower-like polyaniline/graphene hybrids for high-performance supercapacitor[J]. Composites Science and Technology, 2017, 142:286-293. DOI:10.1016/j.rser.2015.12.249
[11] EFTEKHARI A, LI L, YANG Y. Polyaniline supercapacitors[J]. Journal of Power Sources, 2017, 347:86-107. DOI:10.1016/j.rser.2015.12.249
[12] 毛定文. 超级电容器用聚苯胺/活性炭复合材料的研究[D]. 北京: 北京化工大学, 2007.
[13] 张月青, 李巧玲, 张豪, 等. 聚苯胺/碳纳米管复合物的制备及其工艺研究[J]. 化工新型材料, 2012, 40(3): 103-109.
[14] 王琴, 李建玲, 高飞, 等. 超级电容器用聚苯胺/活性炭复合电极的研究[J]. 新型炭材料, 2008, 23(3): 275-280.
[15] 蔡敏, 杨桂芬, 王红强, 等. 超级电容器聚苯胺/活化中间相碳微球复合电极材料的研究[J]. 功能材料与器件学报, 2011, 17(2): 168-172.
[16] WU C, WANG X Y, JU B W, et al. Supercapacitive behaviors of activated mesocarbon microbeads coated with polyaniline[J]. International Journal of Hydrogen Energy, 2012, 37(3): 14365-14372. DOI:10.1016/j.ijhydene. 2012.07.087
[1] ZHONG Xin-xian, WANG Zhi-hong, YIN Xiao-ling, WANG Yan-jun, HUANGHan-xing, FENG Qi-peng. Electrocatalytic Performance of Platinum-modified PAni/PTn Composite Electrode toward Methanol Oxidation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 75-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!