Journal of Guangxi Normal University(Natural Science Edition) ›› 2017, Vol. 35 ›› Issue (4): 91-97.doi: 10.16088/j.issn.1001-6600.2017.04.013

Previous Articles     Next Articles

Peptide Probe Combined Nanosilver Catalytic Reaction-SurfacePlasmon Resonance Spectrophotometric Detectionfor Trace Human Chorionic Gonadotropin

LI Chongning1,2, PAN Hongcheng1*, LIU Qingye2, LIANG Aihui2, JIANG Zhiliang2*   

  1. 1. College of Chemistry and Bioengineering, Guilin University of Technology, Guilin Guangxi 541006, China;
    2. College of Environment and Resources, Guangxi Normal University, Guilin Guangxi 541004, China
  • Online:2017-07-25 Published:2018-07-25

Abstract: In pH 7.4 Na2HPO4-NaH2PO4 buffer solution with the presence of human chorionic gonadotropin peptide (HCGP) probe, the AgNPs can be aggregated to bigger AgNPs clusters. However, AgNPs can be well dispersed into this solution when the human chorionic gonadotropin (HCG) is added to form stable HCGP-HCG composite. The well-dispersed AgNPs exhibits catalysis on the reaction of H2O2 reducting HAuCl4 into AuNPs which appeares a strong surface plasmon resonance (SPR) peak at 550 nm. With the increase of HCG concentration, the SPR peak increases linearly at 550 nm. The increased SPR absorption (ΔA550 nm) is linear to HCG in the range of 0.25~50 μg/L, with a regression equation of ΔA550 nm=0.012 4C+0.02,a correlation coefficient of 0.987 8, and a detection limit of 0.2 μg/L. Thus, a simple, low-cost and sensitive nanosilver-catalytic SPR spectrometry was developed for the determination of HCG.

Key words: peptide probe, human chorionic gonadotropin, AgNPs, nanocatalysis, SPR absorption

CLC Number: 

  • O657.3
[1] LEMPIINEN A, HOTAKAINEN K, ALFTHAN H, et al. Loss of human chorionic gonadotropin in urine during storage at -20 ℃[J]. Clin Chim Acta, 2012, 413: 232-236.
[2] LUND H, PAUS E, BERGER P, et al. Epitope analysis and detection of human chorionic gonadotropin (HCG) variants by monoclonal antibodies and mass spectrometry[J]. Tumor Biol, 2014, 5:1013-1022.
[3] LEI J Q, JING T, ZHOU T T, et al. A simple and sensitive immunoassay for the determination of human chorionic gonadotropin by graphene-based chemiluminescence resonance energy transfer[J]. Biosens Bioelectron, 2014,54: 72-77.
[4] YANG Guangming, YANG Xueying, YANG Canyu, et al.A reagentless amperometric immunosensor for human chorionic gonadotrophin based on a gold nanotube arrays electrode[J]. Colloids and Surfaces A, 2011, 389: 195-200.
[5] MAO L, YUAN R, CHAI Y Q, et al. A new electrochemiluminescence immunosensor based on Ru(bpy)2+3-doped TiO2 nanoparticles labeling for ultrasensitive detection of human chorionic gonadotrophin[J]. Sens Actuators B, 2010, 149: 226-232.
[6] JIANG Z L, ZOU M J, LIANG A H. An immunon anogold resonance scattering spectral probe for rapid assay of human chorionic gonadotrophin[J]. Clin Chim Acta, 2008, 387: 24-30.
[7] LUND H, LVSLETTEN K, PAUS E, et al. Immuno-MS based targeted proteomics: Highly specific, sensitive, and reproducible human horionic gonadotropin determination for clinical diagnostics and doping analysis[J]. Anal Chem, 2012, 84:7926-7932.
[8] SU J, ZHOU Z X, LI H N, et al. Quantitative detection of human chorionic gonadotropin antigenvia immunogold chromatographic test strips[J]. Anal Methods, 2014, 6:450-455.
[9] YAN X, HUANG Z B, HE M, et al. Detection of HCG-antigen based on enhanced photoluminescence of hierarchical ZnO arrays[J]. Colloids and Surfaces B, 2012,89:86-92.
[10] 黄嫣嫣,赵睿.基于靶向多肽探针的蛋白质分析检测新方法[J].分析测试学报,2012, 31(9): 1184-1190
[11] WEISSLEDER R, KELLY K, SUN E Y, et al. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules[J]. Nature Biotechnology, 2005, 23: 1418-1423.
[12] SHIBA K. Natural and artificial peptide motifs: their origins and the application of motif- programming[J]. Chemical Society Reviews, 2010, 39: 117-126.
[13] DING X, YANG K L. Antibody-free detection of human chorionic gonadotropin by use of liquid crystals[J]. Anal Chem, 2013, 85: 10710-10716.
[14] TSE J, WANG Y, ZENGEYA T, et al. Peptide nucleic acid probe for protein affinity purification based on biotin-streptavidin interaction and peptide nucleic acid strand hybridization[J]. Anal Biochem, 2015, 470: 34-40.
[15] WANG W Z, WEI Z W, ZHANG D, et al. Rapid screening of peptide probes through in situ single-bead sequencing microarray[J]. Anal Chem, 2014, 86: 11854-11859.
[16] GHOSH A, BUETTNER C J, MANOS A A, et al. Probing peptide amphiphile self-assembly in blood serum[J]. Biomacromolecules, 2014, 15: 4488-4494.
[17] CHANG C C, CHEN C Y, CHEN C P, et al. Facile colorimetric detection of human chorionic gonadotropin based on the peptide-induced aggregation of gold nanoparticles[J]. Anal Methods, 2015, 7: 29-33.
[18] DING X K,YANG K L. Antibody-free detection of human chorionic gonadotropin by use of liquid crystals[J]. Anal Chem, 2013, 85: 10710-10716.
[19] SU L, QIN W, ZHANG H, et al. The peroxidase/catalase-like activities of MFe2O4 (M=Mg, Ni, Cu) MNPs and their application in colorimetric biosensing of glucose[J]. Biosens Bioelectron, 2015, 63: 384-391.
[20] WANG X, JIANG C, QIN Y, et al. SERS spectral study of HAuCl4-cysteine nanocatalytic reaction and its application for detection of heparin sodium with label-free vitoria blue 4R molecular probe[J]. Scientific Reports, 2017, 7: 45979.
[21] OUYANG H, LI C, LIU Q, et al. Resonance Rayleigh scattering and SERS spectral detection of trace Hg(Ⅱ) based on the gold nanocatalysis[J]. Nanomaterials, 2017, 7: 114.
[22] WEI H, WANG E K. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes[J]. Chem Soc Rev, 2013, 42(14): 6060-6093.
[23] 蒋治良,姚东梅,李芳,等.免疫金铂纳米合金催化共振散射光谱法则定痕量人绒毛膜促性腺激素[J].化学学报,2012,70(16):1748-1754.
[1] LI Chongning, YANG Duo, PAN Hongcheng, WEN Guiqing, LIANG Aihui, JIANG Zhiliang. Hydride Generation-Rhodamine 6G Fluorescence Method forthe Determination of Trace Arsenic [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 111-118.
[2] LI Chong-ning, TANG Xue-ping, DENG Wen-jing, WEN Gui-qing, LIU Qing-ye, LIANG Ai-hui, JIANG Zhi-liang. Resonance Rayleigh Scattering Determination of Trace Bromate in Drinking Water Using Polyvinyl Alcohol-Boric Acid-iodine System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(3): 111-116.
[3] TANG Xue-ping, WANG Yao-hui, LIU Qing-ye, WEN Gui-qing, ZHANG Xing-hui,
LUO Yang-he, LIANG Ai-hui, JIANG Zhi-liang. An Analytical Platform of Nanosilver SPR Rayleigh Scatteringand Its Application to Detect N2H4 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(2): 88-95.
[4] JIAO Hang-zhou, LIANG Zhen-hua, PENG Gui-hua, ZHOU Huang-xin. Size Effects of Water-Soluble CdTe Quantum Dot in Metal Ion Detection Applications [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(2): 106-110.
[5] DONG Jin-chao, WEN Gui-qing, LIU Qing-ye, LIANG Ai-hui, JIANG Zhi-liang. Nanocatalytic Resonance Rayleigh Scattering Determination of Trace Hemin Using Aptamer-Modified Nanogold Probe [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 191-196.
[6] JIANG Zhi-liang, WEI Yan-yan, WANG Sheng-mian, LI Kun, LIANG Ai-hui. SERRS Determination of Trace Gold(Ⅲ) Using 2-Mercaptopyridine as Molecular Probe [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 218-223.
[7] LIANG Ai-hui, LIU Gao-san, JIANG Zhi-liang. Resonance Scattering Spectral Assay for Alkaline Phosphatase Using BCIP as Substrate [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 99-105.
[8] TANG Mei-ling, LIANG Ai-hui, LIU Qing-ye, JIANG Zhi-liang. Nanocatalytic Spectrophotometric Determination of Palladium(Ⅱ)Using NiCl2-NaH2PO2 System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 47-51.
[9] LIU Qingye, WANG Hua, HUANG Danhua, HE Shihe, LI Jiao, LUO Junheng, ZHANG Xinghui, WEN Guiqing, LIANG Aihui, JIANG Zhiliang. Determination of Trace Chromium(Ⅵ) by Carbon NanoparticlesResonance Energy Transfer Rayleigh Scattering [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 128-133.
[10] JIANG Zhi-liang, YAO Dong-mei, WEI Yan-yan. AuPt Nanoalloy Catalytic Phosphomolybdate Blue Spectrophotometric Assay for Cysteine [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 59-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!