Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (4): 157-164.doi: 10.16088/j.issn.1001-6600.2024041401

• Ecology and Environmental Science Research • Previous Articles     Next Articles

Fluorescence Intensity and Polarization Method for Acetamiprid Detection Based on Graphene Oxide

YIN Nanzu1,2, HUANG Qian1,2, ZHAO Jingjin1,2*   

  1. 1. Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions (Guangxi Normal University), Guilin Guangxi 541006, China;
    2. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China
  • Received:2024-04-14 Revised:2024-06-27 Online:2025-07-05 Published:2025-07-14

Abstract: A fluorescence intensity and polarization method for simultaneous detection of pesticide acetamiprid was established based on the fluorescence quenching effect and mass amplification effect of graphene oxide (GO). When nucleic acid signal probe which labeled with fluorescent molecule FAM attached to the GO surface, a lower fluorescence intensity and a higher polarization signal was detected. After acetamiprid binds to its aptamer, the released complementary probe was hybridized with the signal probe to move it away from graphene, and then the enhanced fluorescence intensity and the reduced polarization signal are obtained. The relationship between the fluorescence intensity or polarization signal and different concentrations of acetamiprid was examined, and the conditions such as the target recognition time, GO concentration and reaction time were optimized. Under the optimized experimental conditions, the fluorescence polarization detection method (LOD=5 nmol/L) had a lower detection limit than the fluorescence intensity method (LOD=50 nmol/L), while the fluorescence intensity method was more stable. This method showed good selectivity and achieved spiked recovery analysis of acetamiprid in celery leaves and lake water.

Key words: acetamiprid, graphene oxide, fluorescence analysis, fluorescence polarization, fluorescence quenching

CLC Number:  O657.3;X839.2;TQ450.263
[1] WANG J S, ZHANG D C, XU K K, et al. Electrochemical assay of acetamiprid in vegetables based on nitrogen-doped graphene/polypyrrole nanocomposites[J]. Mikrochimica Acta, 2022, 189(10): 395. DOI: 10.1007/s00604-022-05490-4.
[2] ZAMULE S M, DUPRE C E, MENDOLA M L, et al. Bioremediation potential of select bacterial species for the neonicotinoid insecticides, thiamethoxam and imidacloprid[J]. Ecotoxicology and Environmental Safety, 2021, 209: 111814. DOI: 10.1016/j.ecoenv.2020.111814.
[3] LUO J M, LI S H, WU Y W, et al. Electrochemical sensor for imidacloprid detection based on graphene oxide/gold nano/β-cyclodextrin multiple amplification strategy[J]. Microchemical Journal, 2022, 183: 107979. DOI: 10.1016/j.microc.2022.107979.
[4] PHOGAT A, SINGH J, KUMAR V, et al. Toxicity of the acetamiprid insecticide for mammals: a review[J]. Environmental Chemistry Letters, 2022, 20(2): 1453-1478. DOI: 10.1007/s10311-021-01353-1.
[5] THOMPSON D A, LEHMLER H J, KOLPIN D W, et al. A critical review on the potential impacts of neonicotinoid insecticide use: current knowledge of environmental fate, toxicity, and implications for human health[J]. Environmental Science: Processes & Impacts, 2020, 22(6): 1315-1346. DOI: 10.1039/C9EM00586B.
[6] SOFI J A, DAR A A, JAN I, et al. Development and validation of gas chromatography with electron capture detection method using QuEChERS for pesticide residue determination in cucumber[J]. Biomedical Chromatography, 2023, 37(8): e5647. DOI: 10.1002/bmc.5647.
[7] FARAJZADEH M A, KHOSHMARAM L. Air-assisted liquid-liquid microextraction-gas chromatography-flame ionisation detection: a fast and simple method for the assessment of triazole pesticides residues in surface water, cucumber, tomato and grape juices samples[J]. Food Chemistry, 2013, 141(3): 1881-1887. DOI: 10.1016/j.foodchem.2013.05.088.
[8] WANG C, WU Q H, WU C X, et al. Application of dispersion-solidification liquid-liquid microextraction for the determination of triazole fungicides in environmental water samples by high-performance liquid chromatography[J]. Journal of Hazardous Materials, 2011, 185(1): 71-76. DOI: 10.1016/j.jhazmat.2010.08.124.
[9] ELMASTAS A, UMAZ A, PIRINC V, et al. Quantitative determination and removal of pesticide residues in fresh vegetables and fruit products by LC-MS/MS and GC-MS/MS[J]. Environmental Monitoring and Assessment, 2023, 195(2): 277. DOI: 10.1007/S10661-022-10910-2.
[10] STACHNIUK A, SZMAGARA A, CZECZKO R, et al. LC-MS/MS determination of pesticide residues in fruits and vegetables[J]. Journal of Environmental Science and Health. Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 2017, 52(7): 446-457. DOI: 10.1080/03601234.2017.1301755.
[11] XIE W, HAN C, QIAN Y, et al. Determination of neonicotinoid pesticides residues in agricultural samples by solid-phase extraction combined with liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2011, 1218(28): 4426-4433. DOI: 10.1016/j.chroma.2011.05.026.
[12] YI J L, LIU Z, LIU J H, et al. A label-free electrochemical aptasensor based on 3D porous CS/rGO/GCE for acetamiprid residue detection[J]. Biosensors & Bioelectronics, 2020, 148: 111827. DOI: 10.1016/j.bios.2019.111827.
[13] LI R Y, WANG J, LI N N, et al. Electrochemical detection of omethoate and acetamiprid in vegetable and fruit with high sensitivity and selectivity based on pomegranate-like gold nanoparticle and double target-induced DNA cycle signal amplification[J]. Sensors and Actuators B: Chemical, 2022, 359: 131597. DOI: 10.1016/J.SNB.2022.131597.
[14] XU C N, LIN M, WANG T Y, et al. Colorimetric aptasensor for on-site detection of acetamiprid with hybridization chain reaction-assisted amplification and smartphone readout strategy[J]. Food Control, 2022, 137: 108934. DOI: 10.1016/j.foodcont.2022.108934.
[15] ZHANG D C, LANG X D, HUI N, et al. Dual-mode electrochemical biosensors based on chondroitin sulfate functionalized polypyrrole nanowires for ultrafast and ultratrace detection of acetamiprid pesticide[J]. Microchemical Journal, 2022, 179: 107530. DOI: 10.1016/J.MICROC.2022.107530.
[16] GU Y, LI Q L, YIN M J, et al. A super-hydrophobic perfluoropolyether coated polytetrafluoroethylene sheets substrate for detection of acetamiprid surface-enhanced Raman spectroscopy[J].Pectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 278: 121373. DOI: 10.1016/J.SAA.2022.121373.
[17] MAO M X, XIE Z J, MA P F, et al. Design and optimizing gold nanoparticle-cDNA nanoprobes for aptamer-based lateral flow assay: application to rapid detection of acetamiprid[J]. Biosensors and Bioelectronics, 2022, 207: 114114. DOI: 10.1016/j.bios.2022.114114.
[18] SABERI Z, REZAEI B, ENSAFI A A. Fluorometric label-free aptasensor for detection of the pesticide acetamiprid by using cationic carbon dots prepared with cetrimonium bromide[J]. Mikrochimica Acta, 2019, 186(5): 273. DOI: 10.1007/s00604-019-3378-9.
[19] CHANG T W, WANG S H, CHIN I S, et al. Biomimetic affinity sensor for the ultrasensitive detection of neonicotinoids[J]. Biosensors and Bioelectronics, 2023, 239: 115630. DOI: 10.1016/j.bios.2023.115630.
[20] GUO Q, ZHANG J, SUN H Y, et al. A graphene oxide-based covalent resorufin-conjugated fluorescence “OFF-ON” probe for detection of hydrazine[J]. Chemistry, 2022, 17(12): e202200060. DOI: 10.1002/asia.202200060.
[21] 毛芳芳,庞锦英,李建鸣,等.Fe3O4/氧化石墨烯复合纳米粒子的制备及其体外毒性评价[J].广西师范大学学报(自然科学版),2018,36(1):112-120. DOI: 10.16088/j.issn.1001-6600.2018.01.016.
[22] LIU D L, WANG Q Y, CHEN A M, et al. Ultrafast dynamics on fluorescence quenching of rhodamine 6G by graphene oxide[J]. Luminescence, 2021, 36(5): 1300-1305. DOI: 10.1002/bio.4056.
[23] ZHENG Y J, CHEN J Y, LI Y, et al. Dual-probe fluorescent biosensor based on T7 exonuclease-assisted target recycling amplification for simultaneous sensitive detection of microRNA-21 and microRNA-155[J]. Analytical and Bioanalytical Chemistry, 2021,413(6): 1605-1614. DOI: 10.1007/s00216-020-03121-6.
[24] 张怡雯,韦汶言,赵晶瑾.荧光偏振技术在生化分析检测中的研究进展[J].广西师范大学学报(自然科学版),2022,40(5):216-226. DOI: 10.16088/j.issn.1001-6600.2022030310.
[25] 肖雪,龙磊,左芳.基于氧化石墨烯的无酶循环放大荧光信号法检测DNA[J].西南民族大学学报(自然科学版),2023,49(5):509-516. DOI: 10.11920/xnmdzk.2023.05.005.
[26] 赵鄞瑞,覃英凤,赵晶瑾.基于氧化石墨烯纳米片增强的荧光偏振法检测碱性磷酸酶活性[J].分析试验室,2021,40(6):645-648. DOI: 10.13595/j.cnki.issn1000-0720.2020.102301.
[1] SU Yingjie, WANG Dafei, YANG Wen, ZHANG Mengyang, HOU Dongrui, LUO Jing, SUN Qinggong, YANG Hao, WANG Jianfeng. Preparation of UV Resistant and Super Hydrophobic Multifunctional Fabric PDMS/RGO-CO by PDMS Blended Solution [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 138-146.
[2] MAO Fangfang,PANG Jinying,LI Jianming,LU Chunyi. Facile Solvothermal Synthesis and Biocompatible Evaluation of Fe3O4/Graphene Oxide Magnetic Nanocomposites in vitro [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 112-120.
[3] ZOU Hua, ZHOU Xiang-chun, SUN Mei-xiang, WANG Yu-long. Interaction of Bromophenol Blue and Bovine Serum Albumin [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(2): 82-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HE Ankang, CHEN Yanping, HU Ying, HUANG Ruizhang, QIN Yongbin. Fusing Boundary Interaction Information for Named Entity Recognition[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 1 -11 .
[2] LU Zhanyue, CHEN Yanping, YANG Weizhe, HUANG Ruizhang, QIN Yongbin. Relational Extraction Method Based on Mask Attention and Multi-feature Convolutional Networks[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 12 -22 .
[3] QI Dandan, WANG Changzheng, GUO Shaoru, YAN Zhichao, HU Zhiwei, SU Xuefeng, MA Boxiang, LI Shizhao, LI Ru. Topic-based Multi-view Entity Representation for Zero-Shot Entity Retrieval[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 23 -34 .
[4] HUANG Chuanyang, CHENG Can’er, LI Songwei, CHENG Hongdong, ZHANG Qiunan, ZHANG Zhao, SHAO Laipeng, TANG Jian, WANG Yongmei, GUO Kuikui, LU Hanglin, HU Junhui. Study on Temperature Sensing Characteristics of Long Period Fiber Grating with Coating Layer[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 35 -42 .
[5] TIAN Sheng, XIONG Chenyin, LONG Anyang. Point Cloud Classification Method of Urban Roads Based on Improved PointNet++[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 1 -14 .
[6] LI Zongxiao, ZHANG Jian, LUO Xinyue, ZHAO Yifei, LU Fei. Research on Arrival Trajectory Prediction Based on K-means and Adam-LSTM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 15 -23 .
[7] SONG Mingkai, ZHU Chengjie. Research on Fault Location of Distribution Network Based on H-WOA-GWO and Region Correction Strategies[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 24 -37 .
[8] CHEN Yu, CHEN Lei, ZHANG Yi, ZHANG Zhirui. Wind Speed Prediction Model Based on QMD-LDBO-BiGRU[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 38 -57 .
[9] HAN Shuo, JIANG Linfeng, YANG Jianbin. Attention-based PINNs Method for Solving Saint-Venant Equations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 58 -68 .
[10] LI Zhixin, KUANG Wenlan. Fine-grained Image Classification Combining Adaptive Spatial Mutual Attention and Feature Pair Integration Discrimination[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 69 -82 .