Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (4): 157-164.doi: 10.16088/j.issn.1001-6600.2024041401
• Ecology and Environmental Science Research • Previous Articles Next Articles
YIN Nanzu1,2, HUANG Qian1,2, ZHAO Jingjin1,2*
| [1] WANG J S, ZHANG D C, XU K K, et al. Electrochemical assay of acetamiprid in vegetables based on nitrogen-doped graphene/polypyrrole nanocomposites[J]. Mikrochimica Acta, 2022, 189(10): 395. DOI: 10.1007/s00604-022-05490-4. [2] ZAMULE S M, DUPRE C E, MENDOLA M L, et al. Bioremediation potential of select bacterial species for the neonicotinoid insecticides, thiamethoxam and imidacloprid[J]. Ecotoxicology and Environmental Safety, 2021, 209: 111814. DOI: 10.1016/j.ecoenv.2020.111814. [3] LUO J M, LI S H, WU Y W, et al. Electrochemical sensor for imidacloprid detection based on graphene oxide/gold nano/β-cyclodextrin multiple amplification strategy[J]. Microchemical Journal, 2022, 183: 107979. DOI: 10.1016/j.microc.2022.107979. [4] PHOGAT A, SINGH J, KUMAR V, et al. Toxicity of the acetamiprid insecticide for mammals: a review[J]. Environmental Chemistry Letters, 2022, 20(2): 1453-1478. DOI: 10.1007/s10311-021-01353-1. [5] THOMPSON D A, LEHMLER H J, KOLPIN D W, et al. A critical review on the potential impacts of neonicotinoid insecticide use: current knowledge of environmental fate, toxicity, and implications for human health[J]. Environmental Science: Processes & Impacts, 2020, 22(6): 1315-1346. DOI: 10.1039/C9EM00586B. [6] SOFI J A, DAR A A, JAN I, et al. Development and validation of gas chromatography with electron capture detection method using QuEChERS for pesticide residue determination in cucumber[J]. Biomedical Chromatography, 2023, 37(8): e5647. DOI: 10.1002/bmc.5647. [7] FARAJZADEH M A, KHOSHMARAM L. Air-assisted liquid-liquid microextraction-gas chromatography-flame ionisation detection: a fast and simple method for the assessment of triazole pesticides residues in surface water, cucumber, tomato and grape juices samples[J]. Food Chemistry, 2013, 141(3): 1881-1887. DOI: 10.1016/j.foodchem.2013.05.088. [8] WANG C, WU Q H, WU C X, et al. Application of dispersion-solidification liquid-liquid microextraction for the determination of triazole fungicides in environmental water samples by high-performance liquid chromatography[J]. Journal of Hazardous Materials, 2011, 185(1): 71-76. DOI: 10.1016/j.jhazmat.2010.08.124. [9] ELMASTAS A, UMAZ A, PIRINC V, et al. Quantitative determination and removal of pesticide residues in fresh vegetables and fruit products by LC-MS/MS and GC-MS/MS[J]. Environmental Monitoring and Assessment, 2023, 195(2): 277. DOI: 10.1007/S10661-022-10910-2. [10] STACHNIUK A, SZMAGARA A, CZECZKO R, et al. LC-MS/MS determination of pesticide residues in fruits and vegetables[J]. Journal of Environmental Science and Health. Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 2017, 52(7): 446-457. DOI: 10.1080/03601234.2017.1301755. [11] XIE W, HAN C, QIAN Y, et al. Determination of neonicotinoid pesticides residues in agricultural samples by solid-phase extraction combined with liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2011, 1218(28): 4426-4433. DOI: 10.1016/j.chroma.2011.05.026. [12] YI J L, LIU Z, LIU J H, et al. A label-free electrochemical aptasensor based on 3D porous CS/rGO/GCE for acetamiprid residue detection[J]. Biosensors & Bioelectronics, 2020, 148: 111827. DOI: 10.1016/j.bios.2019.111827. [13] LI R Y, WANG J, LI N N, et al. Electrochemical detection of omethoate and acetamiprid in vegetable and fruit with high sensitivity and selectivity based on pomegranate-like gold nanoparticle and double target-induced DNA cycle signal amplification[J]. Sensors and Actuators B: Chemical, 2022, 359: 131597. DOI: 10.1016/J.SNB.2022.131597. [14] XU C N, LIN M, WANG T Y, et al. Colorimetric aptasensor for on-site detection of acetamiprid with hybridization chain reaction-assisted amplification and smartphone readout strategy[J]. Food Control, 2022, 137: 108934. DOI: 10.1016/j.foodcont.2022.108934. [15] ZHANG D C, LANG X D, HUI N, et al. Dual-mode electrochemical biosensors based on chondroitin sulfate functionalized polypyrrole nanowires for ultrafast and ultratrace detection of acetamiprid pesticide[J]. Microchemical Journal, 2022, 179: 107530. DOI: 10.1016/J.MICROC.2022.107530. [16] GU Y, LI Q L, YIN M J, et al. A super-hydrophobic perfluoropolyether coated polytetrafluoroethylene sheets substrate for detection of acetamiprid surface-enhanced Raman spectroscopy[J].Pectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 278: 121373. DOI: 10.1016/J.SAA.2022.121373. [17] MAO M X, XIE Z J, MA P F, et al. Design and optimizing gold nanoparticle-cDNA nanoprobes for aptamer-based lateral flow assay: application to rapid detection of acetamiprid[J]. Biosensors and Bioelectronics, 2022, 207: 114114. DOI: 10.1016/j.bios.2022.114114. [18] SABERI Z, REZAEI B, ENSAFI A A. Fluorometric label-free aptasensor for detection of the pesticide acetamiprid by using cationic carbon dots prepared with cetrimonium bromide[J]. Mikrochimica Acta, 2019, 186(5): 273. DOI: 10.1007/s00604-019-3378-9. [19] CHANG T W, WANG S H, CHIN I S, et al. Biomimetic affinity sensor for the ultrasensitive detection of neonicotinoids[J]. Biosensors and Bioelectronics, 2023, 239: 115630. DOI: 10.1016/j.bios.2023.115630. [20] GUO Q, ZHANG J, SUN H Y, et al. A graphene oxide-based covalent resorufin-conjugated fluorescence “OFF-ON” probe for detection of hydrazine[J]. Chemistry, 2022, 17(12): e202200060. DOI: 10.1002/asia.202200060. [21] 毛芳芳,庞锦英,李建鸣,等.Fe3O4/氧化石墨烯复合纳米粒子的制备及其体外毒性评价[J].广西师范大学学报(自然科学版),2018,36(1):112-120. DOI: 10.16088/j.issn.1001-6600.2018.01.016. [22] LIU D L, WANG Q Y, CHEN A M, et al. Ultrafast dynamics on fluorescence quenching of rhodamine 6G by graphene oxide[J]. Luminescence, 2021, 36(5): 1300-1305. DOI: 10.1002/bio.4056. [23] ZHENG Y J, CHEN J Y, LI Y, et al. Dual-probe fluorescent biosensor based on T7 exonuclease-assisted target recycling amplification for simultaneous sensitive detection of microRNA-21 and microRNA-155[J]. Analytical and Bioanalytical Chemistry, 2021,413(6): 1605-1614. DOI: 10.1007/s00216-020-03121-6. [24] 张怡雯,韦汶言,赵晶瑾.荧光偏振技术在生化分析检测中的研究进展[J].广西师范大学学报(自然科学版),2022,40(5):216-226. DOI: 10.16088/j.issn.1001-6600.2022030310. [25] 肖雪,龙磊,左芳.基于氧化石墨烯的无酶循环放大荧光信号法检测DNA[J].西南民族大学学报(自然科学版),2023,49(5):509-516. DOI: 10.11920/xnmdzk.2023.05.005. [26] 赵鄞瑞,覃英凤,赵晶瑾.基于氧化石墨烯纳米片增强的荧光偏振法检测碱性磷酸酶活性[J].分析试验室,2021,40(6):645-648. DOI: 10.13595/j.cnki.issn1000-0720.2020.102301. |
| [1] | SU Yingjie, WANG Dafei, YANG Wen, ZHANG Mengyang, HOU Dongrui, LUO Jing, SUN Qinggong, YANG Hao, WANG Jianfeng. Preparation of UV Resistant and Super Hydrophobic Multifunctional Fabric PDMS/RGO-CO by PDMS Blended Solution [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 138-146. |
| [2] | MAO Fangfang,PANG Jinying,LI Jianming,LU Chunyi. Facile Solvothermal Synthesis and Biocompatible Evaluation of Fe3O4/Graphene Oxide Magnetic Nanocomposites in vitro [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 112-120. |
| [3] | ZOU Hua, ZHOU Xiang-chun, SUN Mei-xiang, WANG Yu-long. Interaction of Bromophenol Blue and Bovine Serum Albumin [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(2): 82-87. |
|