Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (1): 9-19.doi: 10.16088/j.issn.1001-6600.2024051902

Previous Articles     Next Articles

Effects of Karst Vegetation Restoration on GRSP in Northern Guangxi

TANG Li1,2, LI Mengxia1,2, HUANG Huixin1,2, PAN Xinru1,2, JIANG Xuefang1,2, YANG Shujun1,2, PAN Yu1,2, QIN Yunbin1,2,3*   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), Guilin Guangxi 541006, China;
    3. Institute for Sustainable Development and Innovation, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2024-05-19 Revised:2024-07-16 Online:2025-01-05 Published:2025-02-07

Abstract: The glomalin-related soil protein (GRSP)is a crucial constituent of soil organic matter, contributing to the enhancement of soil aggregate water stability and the promotion of soil carbon storage. This study focused on investigating the variations in GRSP content and its influencing factors during karst vegetation restoration in northern Guangxi. Rhizosphere soil, non-rhizosphere soil, and farmland (control) soil from three different stages of vegetation restoration (shrub stage, transition stage with irrigation, and forest stage) were selected as research subjects. The analysis included total glomalin-related soil protein (T-GRSP), as well as easily extractable glomalin-related soil protein (EE-GRSP), along with an examination of key environmental factors affecting changes in GRSP content. The findings revealed significantly higher T-GRSP and EE-GRSP contents in rhizosphere soils at each vegetation restoration stage compared with those in farmland (P<0.05). Additionally, the T-GRSP content was highest during the forest stage. The ratios of T-GRSP/SOC ranged from 4.45% to 18.05%, while the ratios of EE-GRSP/SOC ranged from 0.23% to 1.35%. Furthermore, these ratios were significantly higher in farmland than at each vegetation restoration stage (P<0.001). Notably, T-GRSP content was significantly higher in rhizosphere soils than non-rhizosphere soils during both transition and forest stages (P<0.05). Soil organic carbon and nitrate nitrogen content emerged as key factors driving positive changes in T-GRSP content; meanwhile, the contents of total nitrogen, organic carbon, and microbial nitrogen were identified as key influencers for positive changes observed in EE-GRSP. In conclusion, karst vegetation restoration in northern Guangxi effectively promotes GRSP accumulation and subsequently enhances SOC accumulation and stability.

Key words: karst area, vegetation restoration, arbuscular mycorrhizal fungi, glomalin, soil protein, rhizosphere soil

CLC Number:  S153.621;X171.4
[1] 陈永毕, 熊康宁, 池永宽. 我国南方喀斯特石漠化治理进展[J]. 江苏农业科学, 2019, 47(1): 17-21. DOI: 10.15889/j.issn.1002-1302.2019.01.004.
[2] 张婷. 西南地区喀斯特异质生境植物群落特征及其影响因素[D]. 贵阳: 贵州民族大学, 2023. DOI: 10.27807/d.cnki.cgzmz.2023.000582.
[3] 罗婷, 黄甫昭, 李健星, 等. 广西漓江流域喀斯特地区植被不同恢复阶段植物优势种叶片和土壤的生态化学计量特征[J]. 植物资源与环境学报, 2024, 33(2): 80-90. DOI: 10.3969/j.issn.1674-7895.2024.02.09.
[4] 刘淑娟, 张伟, 王克林, 等. 桂西北典型喀斯特峰丛洼地退耕还林还草的固碳效益评价[J]. 生态学报, 2016, 36(17): 5528-5536. DOI: 10.5846/stxb201503180520.
[5] 沙国良, 陈宇轩, 魏天兴, 等. 黄土高原丘陵区典型退耕恢复植被土壤碳分布特征及其影响因素[J]. 土壤, 2022, 54(6): 1265-1272. DOI: 10.13758/j.cnki.tr.2022.06.022.
[6] 王维. 植被恢复对喀斯特地区土壤质量的影响研究[J]. 河南水利与南水北调, 2023, 52(7): 113-115. DOI: 10.3969/j.issn.1673-8853.2023.07.062.
[7] 许敏. 喀斯特石漠化生境质量与林灌草多样性修复研究[D]. 贵阳: 贵州师范大学, 2019. DOI: 10.27048/d.cnki.ggzsu.2019.000306.
[8] 朱兴菲, 刘小芳, 赵勇钢, 等. 晋西黄土区典型人工植被对土壤球囊霉素和团聚体稳定性的影响[J]. 水土保持通报, 2018, 38(6): 80-87. DOI: 10.13961/j.cnki.stbctb.2018.06.013.
[9] 甘佳伟, 韩晓增, 邹文秀. 球囊霉素及其在土壤生态系统中的作用[J]. 土壤与作物, 2022, 11(1): 41-53. DOI: 10.11689/j.issn.2095-2961.2022.01.005.
[10] WRIGHT S F, UPADHYAYA A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi[J]. Plant and Soil, 1998, 198(1): 97-107. DOI: 10.1023/A:1004347701584.
[11] 胡乐宁, 苏以荣, 何寻阳. 桂西北喀斯特典型土壤的大团聚体分级特征研究[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 213-219. DOI: 10.16088/j.issn.1001-6600.2013.03.008.
[12] VASCONCELLOS R L F, BONFIM J A, BARETTA D, et al. Arbuscular mycorrhizal fungi and glomalin-related soil protein as potential indicators of soil quality in a recuperation gradient of theAtlantic forest in Brazil[J]. Land Degradation & Development, 2016, 27(2): 325-334. DOI: 10.1002/ldr.2228.
[13] 王建, 周紫燕, 凌婉婷. 球囊霉素相关土壤蛋白的分布及环境功能研究进展[J]. 应用生态学报, 2016, 27(2): 634-642. DOI: 10.13287/j.1001-9332.201602.028.
[14] RILLIG M C, WRIGHT S F, NICHOLS K A, et al.Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils[J]. Plant and soil, 2001, 233(2): 167-177. DOI: 10.1023/A:1010364221169.
[15] 曾维军, 刘燕, 秦维, 等. 喀斯特地区不同海拔对油茶根际土壤丛枝菌根真菌物种群落的影响[J]. 山东农业科学, 2024, 56(1): 105-112. DOI: 10.14083/j.issn.1001-4942.2024.01.014.
[16] 李涛, 赵之伟. 丛枝菌根真菌产球囊霉素研究进展[J]. 生态学杂志, 2005, 24(9): 1080-1084. DOI: 10.13292/j.1000-4890.2005.0103.
[17] BRUNDRETT M C, TEDERSOO L. Evolutionary history of mycorrhizal symbioses and global host plant diversity[J]. New Phytologist, 2018, 220(4): 1108-1115. DOI: 10.1111/nph.14976.
[18] WANG Q, MEI D G, CHEN J Y, et al. Sequestration of heavy metal by glomalin-related soil protein:implication for water quality improvement in mangrove wetlands[J]. Water Research, 2019, 148: 142-152. DOI: 10.1016/j.watres.2018.10.043.
[19] ZHANG J, TANG X L, HE X H, et al. Glomalin-related soil protein responses to elevated CO2 and nitrogen addition in a subtropical forest: potential consequences for soil carbon accumulation[J]. Soil Biology and Biochemistry, 2015, 83: 142-149. DOI: 10.1016/j.soilbio.2015.01.023.
[20] HOU H, YAN P X, XIE Q M, et al. Distribution characteristics and influence factors of rhizosphere glomalin-related soil protein in three vegetation types of Helan Mountain, China[J]. Forests, 2022, 13(12): 2092. DOI: 10.3390/f13122092.
[21] 高秀兵, 邢丹, 陈瑶, 等. 茶树根际球囊霉素相关土壤蛋白含量及其与土壤因子的关系[J]. 茶叶科学, 2016, 36(2): 191-200. DOI: 10.13305/j.cnki.jts.2016.02.010.
[22] 杨满元, 杨宁, 刘慧娟, 等. 衡阳紫色土丘陵坡地不同土地利用方式对球囊霉素相关土壤蛋白分布的影响[J]. 草地学报, 2020, 28(5): 1260-1265. DOI: 10.11733/j.issn.1007-0435.2020.05.010.
[23] 孙向伟, 王晓娟, 陈牧, 等. 生态环境因子对AM真菌孢子形成与分布的作用机制[J]. 草业学报, 2011, 20(1): 214-221.
[24] 陈胜仙, 张喜亭, 佘丹琦, 等. 森林植物多样性、树种重要值与土壤理化性质对球囊霉素相关土壤蛋白的影响[J]. 生物多样性, 2022, 30(2): 47-59. DOI: 10.17520/biods.2021115.
[25] ZHANG J, LI J, MA L L, et al. Accumulation of glomalin-related soil protein benefits soil carbon sequestration: tropical coastal forest restoration experiences[J]. Land Degradation & Development, 2022, 33(10): 1541-1551. DOI: 10.1002/ldr.4192.
[26] 沈育伊, 滕秋梅, 徐广平, 等. 桂林会仙岩溶湿地土地利用方式对球囊霉素相关土壤蛋白分布的影响[J]. 地球学报, 2022, 43(4): 491-501. DOI: 10.3975/cagsb.2022.012701.
[27] 郭文, 焦鹏宇, 唐楚珺, 等. 不同林龄杉木根际和非根际土壤矿质养分含量及根际效应[J]. 福建农林大学学报(自然科学版), 2022, 51(4): 533-539. DOI: 10.13323/j.cnki.j.fafu(nat.sci.).2022.04.012.
[28] PHILLIPS R P, ERLITZ Y, BIER R, et al.New approach for capturing soluble root exudates in forest soils[J]. Functional Ecology, 2008, 22(6): 990-999. DOI: 10.1111/j.1365-2435.2008.01495.x.
[29] BAIS H P, WEIR T L, PERRY L G, et al. The role of root exudates inrhizosphere interactions with plants and other organisms[J]. Annual Review of Plant Biology, 2006, 57: 233-266. DOI: 10.1146/annurev.arplant.57.032905.105159.
[30] 滕秋梅, 沈育伊, 徐广平, 等. 桂北喀斯特山区不同植被类型土壤碳库管理指数的变化特征[J]. 生态学杂志, 2020, 39(2): 422-433. DOI: 10.13292/j.1000-4890.202002.007.
[31] 王韵, 王克林, 邹冬生, 等. 广西喀斯特地区植被演替对土壤质量的影响[J]. 水土保持学报, 2007, 21(6): 130-134. DOI: 10.3321/j.issn:1009-2242.2007.06.030.
[32] 莫燕华, 邹涵, 马姜明, 等. 喀斯特石山不同演替阶段檵木群落土壤温湿度变化[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 122-130. DOI: 10.16088/j.issn.1001-6600.2020033103.
[33] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
[34] KHAN S, ISMAIL M, IBRAR M, et al. The effect of biochar on soil organic matter, total N in soil and plant, nodules, grain yield and biomass of mung bean[J]. Soil & Environment, 2020, 39(1): 87-94. DOI: 10.25252/SE/2020/132088.
[35] WRIGHT S F, UPADHYAYA A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi[J]. Soil Science, 1996,161(9): 575-586.
[36] 郭曼. 黄土丘陵区土壤质量对植被自然恢复过程的响应与评价[D]. 杨凌: 西北农林科技大学, 2009.
[37] 龙家辉, 蓝家程, 姜勇祥. 喀斯特石漠化地区退耕还林对土壤细菌群落的影响[J]. 农技服务, 2020, 37(7): 8-10, 12.
[38] 阙弘, 葛阳洋, 康福星, 等. 南京典型利用方式土壤中球囊霉素含量及剖面分布特征[J]. 土壤, 2015, 47(4): 719-724. DOI: 10.13758/j.cnki.tr.2015.04.015.
[39] RILLIG M C, WRIGHT S F, EVINER V T. The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species[J]. Plant and Soil, 2002, 238(2): 325-333. DOI: 10.1023/A:1014483303813.
[40] 李扬, 张梦歌, 王震, 等. 耕作和秸秆还田对球囊霉素和土壤生态化学计量特征的影响[J]. 山东农业科学, 2024, 56(2): 118-123. DOI: 10.14083/j.issn.1001-4942.2024.02.016.
[41] 孙兴宇. 小兴安岭不同时期采伐干扰背景下的球囊霉素动态[D]. 哈尔滨: 黑龙江大学, 2022.
[42] 徐其静, 侯磊, 汪丽, 等. 等高反坡阶措施下坡耕地球囊霉素相关土壤蛋白对土壤碳氮储量的贡献[J]. 生态学报, 2024, 44(7): 2919-2930. DOI: 10.20103/j.stxb.202304280893.
[43] 彭思利, 申鸿, 郭涛. 接种丛枝菌根真菌对土壤水稳性团聚体特征的影响[J]. 植物营养与肥料学报, 2010, 16(3): 695-700.
[44] ZHANG J, TANG X L, ZHONG S Y, et al. Recalcitrant carbon components in glomalin-related soil protein facilitate soil organic carbon preservation in tropical forests[J]. Scientific Reports, 2017, 7(1): 2391. DOI: 10.1038/s41598-017-02486-6.
[45] 刘佩雯, 覃云斌, 莫慧婷, 等. 凋落物及根系输入变化对喀斯特地区檵木土壤养分和胞外酶的影响[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 179-191. DOI: 10.16088/j.issn.1001-6600.2023031303.
[46] GU R, XIAO K C, ZHU Z H, et al. Afforestation enhances glomalin-related soil protein content but decreases its contribution to soil organic carbon in a subtropical karst area[J]. Journal of Environmental Management, 2024, 356: 120754. DOI: 10.1016/j.jenvman.2024.120754.
[47] 张贵云. 不同农业措施对丛枝菌根真菌群落结构和侵染效应的影响[D]. 南京: 南京林业大学, 2013. DOI: 10.7666/d.Y2528573.
[48] LI T T, YUAN Y, MOU Z J, et al. Faster accumulation and greater contribution of glomalin to the soil organic carbon pool than amino sugars do under tropical coastal forest restoration[J]. Global Change Biology, 2023, 29(2): 533-546. DOI: 10.1111/gcb.16467.
[49] 张学利, 杨树军, 张百习. 我国林木根际土壤研究进展[J]. 沈阳农业大学学报, 2002, 33(6): 461-465. DOI: 10.3969/j.issn.1000-1700.2002.06.017.
[50] 金涛涛, 赵明, 吴佳海, 等. 庐山常绿阔叶林常见树种根际球囊霉素相关土壤蛋白分布特征及其影响因素[J]. 生态学杂志, 2021, 40(9): 2698-2708. DOI: 10.13292/j.1000-4890.202109.009.
[51] ROSIER C L, PIOTROWSKI J S, HOYE A T, et al. Intraradical protein and glomalin as a tool for quantifying arbuscular mycorrhizal root colonization[J]. Pedobiologia, 2008, 52(1): 41-50. DOI: 10.1016/j.pedobi.2008.02.002.
[52] 王国禧, 王萍, 刘亚龙, 等. 球囊霉素在土壤团聚体中的分布特征及影响因素的Meta分析[J]. 土壤学报, 2024, 61(4): 1147-1155. DOI: 10.11766/trxb202301170024.
[53] SUN X Y, XING Y J, YAN G Y, et al. Dynamics of glomalin-related soil protein and soil aggregates during secondary succession in the temperate forest[J]. Catena, 2024, 234: 107602. DOI: 10.1016/j.catena.2023.107602.
[54] 黄彬彬, 邢亚娟, 闫国永, 等. 兴安落叶松林球囊霉素相关土壤蛋白含量对年际间模拟氮沉降的响应[J]. 生态环境学报, 2019, 28(3): 446-454. DOI: 10.16258/j.cnki.1674-5906.2019.03.003.
[55] 邸涵悦, 郝好鑫, 孙兆祥, 等. 不同演替阶段下球囊霉素相关土壤蛋白对团聚体稳定性的影响[J]. 生态环境学报, 2021, 30(4): 718-725. DOI: 10.16258/j.cnki.1674-5906.2021.04.007.
[56] ZHANG J, TANG X L, HE X H, et al. Glomalin-related soil protein responses to elevated CO2 and nitrogen addition in a subtropical forest: potential consequences for soil carbon accumulation[J]. Soil Biology and Biochemistry, 2015, 83: 142-149. DOI: 10.1016/j.soilbio.2015.01.023.
[57] 蒲洁, 齐雁冰, 王茵茵, 等. 农牧交错带不同植被群落对土壤微生物量碳氮磷的影响[J]. 干旱地区农业研究, 2015, 33(4): 279-285. DOI: 10.7606/j.issn.1000-7601.2015.04.42.
[58] 张梦歌, 石兆勇, 杨梅, 等. 热带山地雨林土壤球囊霉素的分布特征[J]. 生态环境学报, 2020, 29(3): 457-463. DOI: 10.16258/j.cnki.1674-5906.2020.03.004.
[59] WANG Q, WANG W J, ZHONG Z L, et al. Variation in glomalin in soil profiles and its association with climatic conditions, shelterbelt characteristics, and soil properties in poplar shelterbelts of Northeast China[J]. Journal of Forestry Research, 2020, 31(1): 279-290. DOI: 10.1007/s11676-019-00909-w.
[1] CHEN Jingzhong, PENG Liang, LIAO Xiaofeng, LIU Jiming, TONG Bingli. Scalp and Antagonistic Effects of Cultivatable Growth Promoting Fungi in Rhizosphere Soil of Cinnamomum migao H. W. Li [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(1): 20-30.
[2] YANG Pan, HUANG Ying, CEN Lijie, HUANG Li, WANG Haimiao. Distribution of C, N, P, K and Its Ecological Stoichiometry Characteristics in Alchornea trewioides [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 169-178.
[3] LIU Peiwen, QIN Yunbin, MO Huiting, ZHOU Zhenhui, MENG Weiming, HUANG Qixiang, MA Jiangming. Effects of Litter and Root Input and Removal on Soil Nutrient, Enzyme Activity, and Stoichiometry in Karst of Loropetalum chinense [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 179-191.
[4] WANG Bo, QIN Fang, SHI Yancai, QIN Huizhen, DENG Lili, WEI Jiqing. Comparison of Microbial Functional Diversity Between Rhizosphere and Non-rhizosphere of Heteroplexis microcephala [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 237-246.
[5] WU Yanfen, LIU Qiuming, LIU Weihuan, MENG Aiping, CHEN Zhenxiang, LIU Ling. Effects of Inoculation of AMF and Rhizobium on Photosynthetic and Respiratory Metabolism and Growth of Intercropping Glycine max [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 231-241.
[6] ZHANG Xiaoxiao, WANG Miaomiao, FENG Shuzhen, QIU Husen, GAI Shuangshuang, ZHAO Lei, HU Yajun, HE Xunyang, LU Zujun. Effects of Lithology and Vegetation Type on the Soil AM Fungi Community in Karst Region [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 158-167.
[7] YAN Yan, HU Baoqing, HOU Manfu, SHI Shana. Suitability Assessment of Karst Rocky Desertification Control Patternsin Karst Counties of Guangxi, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(4): 145-153.
[8] XIE Qiuli,TANG Yujuan, SU Houren, LI Guangwei, LI Liangbo,WEI Jiguang, HUANG Rongshao. Variation Microbial Biomass and Enzyme Activities in the RhizosphereSoil of the Different Plant Ages of Panax notoginseng [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 149-156.
[9] KANG Fuli, ZHU Guozheng, LIN Yu,HU Zhenxing, DENG Yingwei, FENG Yuneng, CHEN Shenghua,CHEN Fulin, LIU Ling. Effects on Rhizospheric Soil Enzyme Activities and Growth of Fortunella margarita Seedling Inoculated by Two Arbuscular Mycorrhizal Fungi in Two Types of Soil [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(1): 104-112.
[10] LI Hui, YIN Hui, JIANG Zhong-cheng, YANG Qi-yong, WANG Yue. Remote Sensing of Rock Desertification and Soil Erosion in Typical Karst Area and the Key Problems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(2): 133-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HE Jing, FENG Yuanliu, SHAO Jingwen. Research Progress on Multi-source Data Fusion Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 13 -27 .
[2] LIU Changping, SONG Shuxiang, JIANG Pinqun, CEN Mingcan. Differential Passive N-path Filter Based on Switched Capacitors[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 52 -60 .
[3] WANG Shuying, LU Yuxiang, DONG Shutong, CHEN Mo, KANG Bingya, JIANG Zhanglan, SU Chengyuan. Research Progress on the Propagation Process and Control Technology of ARGs in Wastewater[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 1 -15 .
[4] ZHONG Qiao, CHEN Shenglong, TANG Congcong. Hydrogel Technology for Microalgae Collection: Status Overview, Challenges and Development Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 16 -29 .
[5] ZHAI Siqi, CAI Wenjun, ZHU Su, LI Hanlong, SONG Hailiang, YANG Xiaoli, YANG Yuli. Dynamic Relationship Between Reverse Solute Flux and Membrane Fouling in Forward Osmosis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 30 -39 .
[6] ZHENG Guoquan, QIN Yongli, WANG Chenxiang, GE Shijia, WEN Qianmin, JIANG Yongrong. Stepwise Precipitation of Heavy Metals from Acid Mine Drainage and Mineral Formation in Sulfate-Reducing Anaerobic Baffled Reactor System[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 40 -52 .
[7] LIU Yang, ZHANG Yijie, ZHANG Yan, LI Ling, KONG Xiangming, LI Hong. Current Status and Trends of Algal Coagulation Elimination Technology in Drinking Water Treatment: a Visual Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 53 -66 .
[8] TIAN Sheng, CHEN Dong. A Joint Eco-driving Optimization Research for Connected Fuel Cell Hybrid Vehicle via Deep Reinforcement Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 67 -80 .
[9] CHEN Xiufeng, WANG Chengxin, ZHAO Fengyang, YANG Kai, GU Kexin. A Single Intersection Signal Control Method Based on Improved DQN Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 81 -88 .
[10] LI Xin, NING Jing. Online Assessment of Transient Stability in Power Systems Based on Spatiotemporal Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 89 -100 .