Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (2): 231-241.doi: 10.16088/j.issn.1001-6600.2020112002

Previous Articles     Next Articles

Effects of Inoculation of AMF and Rhizobium on Photosynthetic and Respiratory Metabolism and Growth of Intercropping Glycine max

WU Yanfen1,2, LIU Qiuming1,2, LIU Weihuan1,2, MENG Aiping1,2, CHEN Zhenxiang1,2, LIU Ling1,2*   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Spices and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. College of Life Sciences, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2020-11-20 Revised:2021-04-01 Published:2022-05-31

Abstract: In order to explore the effects of inoculation of Glomus etunicatum (abbreviated as A, the similar as below) and Sinorhizobium fredii (R) on plant growth of soybean (Glycine max)in kumquat (Fortunella margarita (Lour.) Swingle (F)/soybean (S) intercropping system, a series of field experiments were conducted to analyze the photosynthetic and respiratory metabolism and plant growth of S inoculated with several treatments. The results showed that: 1)The mycorrhizal infection intensity ηm and vesicle intensity ηV in root system of S of all intercropping treatments were lower than those of monocropping treatments respectively, there were significant differences in ηm and no significant differences in ηV among the corresponding treatments (except that ηV increased significantly in intercropping double inoculation treatment compared with monoculture double inoculation treatment). Compared with the corresponding S or F+S treatment, those of all single inoculation A treatments or single inoculation R treatments showed significant or unsignificant promoting effects respectively, while the increase effect of ηm or ηV of double inoculation treatment A+R was the largest and the differences was significant respectively. 2)Compared with the corresponding monocropping treatments, the number of nodule and dry weight of S were decreased in intercropping system. Compared with the corresponding single inoculation A or R treatments, the promotion with A+R treatment were the most significant respectively. 3)The chlorophyll content and net photosynthetic rate of S were decreased with F+S treatment, while increased after inoculated with single A or R treatment. Those of the promotion effect of both A and R treatment was better than single A or R treatment. 4)The activity of succinate dehydrogenase of S in intercropping system were higher than that of monoculture system, and the promoting effect sequence of inoculation treatment was A+R>A>R. 5)The change trend of H+-ATPase activity in mitochondrial membrane of S leaves was similar to that of net photosynthetic rate. 6)The soybean biomass and yield of the intercropping inoculation treatment were higher than the monocropping inoculation treatment, and the inoculation treatments showed a decreasing trend of A+R>A>R. Therefore, treatment inoculated with both A and R could promote significantly the growth of S in intercropping system, the promotion effect was better than that of the single inoculation treatment.

Key words: arbuscular mycorrhizal fungi (Glomus etunicatum), rhizobium (Sinorhizobium fredii), intercropping soybean (Glycine max), photosynthetic physiology, respiratory metabolism

CLC Number: 

  • S565.1
[1] LIANG J P, HE Z J, SHI W J. Cottonmung bean intercropping improves crop productivity, water use efficiency, nitrogen uptake, and economic benefits in the arid area of Northwest China[J]. Agricultural Water Management, 2020, 240: 106277. DOI: 10.1016/j.agwat.2020.106277.
[2] 段媛媛, 刘晓洪, 吴佳奇, 等. 间作模式对黄连生理生长性状及根际土壤理化性质的影响[J]. 生态学杂志, 2020, 39(11): 3676-3685. DOI: 10.13292/j.1000-4890.202011.034.
[3] CREÈME A, RUMPEL C, GASTAL F, et al. Effects of grasses and a legume grown in monoculture or mixture on soil organic matter and phosphorus forms[J]. Plant and Soil, 2016, 402(1/2): 117-128. DOI: 10.1007/s11104-015-2740-x.
[4] 王雅梅, 许彦骁, 王亚露, 等. 玉米-大豆不同宽幅间作对大豆光合特性及群体产量的影响[J]. 农业环境科学学报, 2020, 39(11): 2587-2595. DOI: 10.11654/jaes.2020-0348.
[5] ZHANG R Z, MU Y, LI X R, et al. Response of the arbuscular mycorrhizal fungi diversity and community in maize and soybean rhizosphere soil and roots to intercropping systems with different nitrogen application rates[J]. Science of the Total Environment, 2020, 740: 139810. DOI: 10.1016/j.scitotenv.2020.139810.
[6] 李淑敏, 武帆. 大豆/玉米间作体系中接种AM真菌和根瘤菌对氮素吸收的促进作用[J]. 植物营养与肥料学报, 2011, 17(1): 110-116. DOI: 10.11674/zwyf.2011.0115.
[7] LIU X, RAHMAN T, SONG C, et al. Changes in light environment, morphology, growth and yield of soybean in maize-soybean intercropping systems[J]. Field Crops Research, 2017, 200: 38-46. DOI: 10.1016/j.fcr.2016.10.003.
[8] 范元芳, 刘沁林, 王锐, 等. 玉米-大豆带状间作对大豆生长、光合荧光特性及产量的影响[J]. 核农学报, 2017, 31(5): 972-978. DOI: 10.11869/j.issn.100-8551.2017.05.0972.
[9] CHEN L H, HU X W, YANG W Q, et al. The effects of arbuscular mycorrhizal fungi on sex-specific responses to Pb pollution in Populus cathayana[J]. Ecotoxicology and Environmental Safety, 2015, 113: 460-468. DOI: 10.1016/j.ecoenv.2014.12.033.
[10] 韦莉莉, 卢昌熠, 丁晶, 等. 丛枝菌根真菌参与下植物-土壤系统的养分交流及调控[J]. 生态学报, 2016, 36(14): 4233-4243. DOI: 10.5846/stxb201412042407.
[11] MENG L B, ZHANG A Y, WANG F, et al. Arbuscular mycorrhizal fungi and Rhizobium facilitate nitrogen uptake and transfer in soybeanmaize intercropping system[J]. Frontiers in Plant Science, 2015, 6: 339. DOI: 10.3389/fpls.2015.00339.
[12] 陈保冬, 于萌, 郝志鹏, 等. 丛枝菌根真菌应用技术研究进展[J]. 应用生态学报, 2019, 30(3): 1035-1046. DOI: 10.13287/j.1001-9332.201903.037.
[13] SALVIOLI A, BONANTE P. Systems biology and “omics” tools: A cooperation for next-generation mycorrhizal studies[J]. Plant Science, 2013, 203/204: 107-114. DOI: 10.1016/j.plantsci.2013.01.001.
[14] 李芳, 高萍, 段廷玉. AM菌根真菌对非生物逆境的响应及其机制[J]. 草地学报, 2016, 24(3): 491-500. DOI: 10.11733/j.issn.1007-0435.2016.03.003.
[15] 杨久扬. AM真菌和改良剂对小果白刺生长和沙化土壤改良效应的影响[D]. 呼和浩特: 内蒙古大学, 2019.
[16] 康福丽, 朱国政, 林钰, 等. AMF对金橘苗根围土壤酶活性及植株生长的影响[J]. 广西师范大学学报(自然科学版), 2017, 35(1): 104-112. DOI: 10.16088/j.issn.1001-6600.2017.01.017.
[17] HAN Q, MA Q, CHEN Y, et al. Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean[J]. The ISME Journal, 2020, 14(8): 1915-1928. DOI: 10.1038/s41396-020-0648-9.
[18] 赵乾旭, 岳献荣, 夏运生, 等. 设施条件接种丛枝菌根真菌对紫色土上玉米/大豆生长及氮素利用的影响[J]. 作物杂志, 2016(5): 94-100. DOI: 10.16035/j.issn.1001-7283.2016.05.016.
[19] 王桂花. 大豆/玉米间作中双接种AM真菌和根瘤菌对氮、碳分配的影响[D]. 广州: 华南农业大学, 2016.
[20] 格格. 双接种对紫花苜蓿/玉米间作体系C、N、P营养元素运移的影响[D]. 长春: 吉林农业大学, 2015.
[21] 孙秀荣. 大豆施肥技术[J]. 农技服务, 2014, 31(5): 104.
[22] 陈建建. 金橘早熟丰产栽培技术要点[J]. 南方农业, 2019, 13(29): 17-18. DOI: 10.19415/j.cnki.1673-890x.2019.29.009.
[23] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000: 130-137.
[24] 李玲. 植物生理学模块实验指导[M]. 北京: 科学出版社, 2009: 41-42.
[25] 刘家尧, 衣艳君, 白克智, 等. CO2/盐冲击对小麦幼苗呼吸酶活性的影响[J]. Acta Botanica Sinica, 1996(8): 641-646. DOI: 10.1007/BF02951625.
[26] 汤复跃, 韦清源, 陈文杰, 等. 缓释N肥对一年三熟“玉米—大豆”间套作体系农艺性状、产量及效益影响[J]. 大豆科学, 2020, 39(5): 734-741. DOI: 10.11861/j.issn.10009841.2020.05.0734.
[27] 朱国政. AMF对金橘大豆间作体系中金橘生长及根际土微生物多样性的影响[D]. 桂林: 广西师范大学, 2015.
[28] PHILLIPS J M, HAYMAN D S. Improved procedures for clearing roots and and staining parasitic and vesicular-arbuscular fungi for rapid assessment of infection[J]. Transactions of the British Mycological Society, 1970, 55(1): 158-161. DOI: 10.1016/S0007-1536(70)80110-3.
[29] TROUVELOT A, KOUGH J L, GIANINAZZI-PEARSON V. Mesure du taux de mycorhization VA d'un systèeme radiculaire. Recherche des méthodes d'estimation ayant une signification fonctionnelle[C]// Physiological and Genetical Aspects of Mycorrhizae: Proceedings of the 1st European Symposium on Mycorrhizea. Paris: INRA, 1986: 217-221.
[30] SPAGNOLETTI F N, COMERO M, CHIOCCHIO V et al. Arbuscular mycorrhiza protects soybean plants against Macrophomina phaseolina even under nitrogen fertilization. European Journal of Plant Pathology, 2020, 156(3): 839-849. DOI: 10.1007/s10658-020-01934-w.
[31] 张卫勤, 邹杭, 张妮娜, 等. 一氧化氮对豆科植物结瘤及固氮的影响机制[J]. 植物学报, 2020, 55(5): 623-633. DOI: 10.11983/CBB20034.
[32] 周贤玉, 唐艺玲, 王志国, 等. 减量施氮与间作模式对甜玉米 AMF 侵染和大豆结瘤及作物氮磷吸收的影响[J]. 中国生态农业学报, 2017, 25(8): 1139-1146. DOI: 10.13930/j.cnki.cjea.170050.
[33] ABD-ALLA M H, EL-ENANY A W E, NAFADY N A, et al. Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L. ) in alkaline soil[J]. Microbiological Research, 2014, 169(1): 49-58. DOI: 10.1016/j.micres.2013.07.00.7.
[34] TAVASOLEE A, ALIASGHARZAD N, SALEHIJOUZANI G, et al. Interactive effects of Arbuscular mycorrhizal fungi and rhizobial strains on chickpea growth and nutrient content in plant[J]. African Journal of Biotechnology, 2011, 10(39): 7585-7591. DOI: 10.1590/S1516-44462004000400008.
[35] XAVIER L J C, GERMIDA J J. Selective interactions between arbuscular mycorrhizal fungi and Rhizobium leguminosarum bv. viceae enhance pea yield and nutrition[J]. Biology and Fertility of Soils, 2003, 37(5): 261-267. DOI: 10.1007/s00374-003-0605-6.
[36] 张亮, 黄建国. 菜豆根瘤菌对土壤无机磷的活化释放作用[J]. 土壤学报, 2012, 49(5): 996-1002. DOI: 10.11766/trxb201106130213.
[37] 曹石超. 根瘤菌与丛枝菌根真菌互作对红江橙营养吸收及生理效应的影响[D]. 重庆: 西南大学, 2020.
[38] SCHIMEL J P, WEINTRAUB M N. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: A theoretical model[J]. Soil Biology and Biochemistry, 2003, 35(4): 549-563. DOI: 10.1016/S0038-0717(03)00015-4.
[39] 刘忆, 袁玲. 根瘤菌和AM真菌对紫花苜蓿结瘤和产质量的影响[J]. 土壤学报, 2020, 57(5): 1292-1298. DOI: 10.11766/trxb201907030439.
[40] KUCEY R M N, PAUL E A. Carbon flow, photosynthesis, and N2 fixation in mycorrhizal and nodulated faba beans (Vicia faba L.) [J]. Soil Biology and Biochemistry, 1982, 14(4): 407-412. DOI: 10.1016/0038-0717(82)90013-X.
[41] LI Y K, LI B, GUO W Z, et al. Effects of nitrogen application on soil nitrification and denitrification rates and N2O emissions in greenhouse[J]. Journal of Agricultural Science & Technology, 2015, 17: 519-530. DOI: 10.1109/ISAPE.2008.4735195.
[42] LI L, TILMAN D, LAMBERS H, et al. Plant diversity and overyielding: Insights from belowground facilitation of intercropping in agriculture[J]. New Phytologist, 2014, 203(1): 63-69. DOI: 10.1111/nph.12778.
[43] 李隆. 间套作体系豆科作物固氮生态学原理与应用[M]. 北京: 中国农业大学出版社, 2013.
[44] 石宁. 丛枝菌根真菌种间及与解磷细菌间的生物互作促进玉米磷吸收的机制[D]. 北京: 中国农业大学, 2016.
[45] 李玲, 沈宝宇, 张天静, 等. 根瘤菌对生态农业的重要意义及其影响因素[J]. 园艺与种苗, 2019, 39(3): 72-75.
[46] 陈永亮, 陈保冬, 刘蕾, 等. 丛枝菌根真菌在土壤氮素循环中的作用[J]. 生态学报, 2014, 34(17): 4807-4815. DOI: 10.5846/stxb201309242346.
[47] LARIMER A L, CLAY K, BEVER J D. Synergism and context dependency of interactions between arbuscular mycorrhizal fungi and rhizobia with a prairie legume[J]. Ecology, 2014, 95(4): 1045-1054. DOI: 10.1890/13-0025.1.
[48] YASMEEN S, BANO A. Combined effect of phosphate-solubilizing microorganisms, Rhizobium and Enterobacter on root nodulation and physiology of soybean (Glycine max L.) [J]. Communications in Soil Science and Plant Analysis, 2014, 45(18): 2373-2384. DOI: 10.10.80/00103624.2014.939192.
[49] 于晓波, 苏本营, 龚万灼, 等. 玉米-大豆带状套作对大豆根瘤性状和固氮能力的影响[J]. 中国农业科学, 2014, 47(9): 1743-1753. DOI: 10.3864/j.issn.0578-1752.2014.09.009.
[50] WANG X R, PAN Q, CHEN F X, et al. Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P[J]. Mycorrhiza, 2011, 21(3): 173-181. DOI: 10.1007/s00572-010-0319-1.
[51] 武帆. 菌根真菌、根瘤菌对大豆/玉米种间氮素转移作用的研究[D]. 哈尔滨: 东北农业大学, 2009.
[52] AFZA R, HARDARSON G, ZAPATA F, et al. Effects of delayed soil and foliar N fertilization on yield and N2 fixation of soybean[J]. Plant and Soil, 1987, 97(3): 361-368. DOI: 10.1007/BF02383226.
[53] PERALA I, WULANDARI A S. Kayu Kuku (Pericopsis mooniana Thw. ) seedlings growth response to tailing media added with vermicompost, Rhizobium, and arbuscular mycorrhizal fungi[J]. IOP Conference. Series: Earth and Environmental Science, 2019, 394: 012023. DOI: 10.10881755-13153941012023.
[54] 贾琴宇. AMF和根瘤菌对间作金橘养分吸收及根围微生态特征的影响[D]. 桂林: 广西师范大学, 2020.
[55] WANG M M, WANG S P, WU L W, et al. Evaluating the lingering effect of livestock grazing on functional potentials of microbial communities in Tibetan grassland soils[J]. Plant and Soil, 2016, 407(1/2): 385-399. DOI: 10.1007/s11104-016-2897-y.
[56] MORTIMER P E, PÉREZ-FERNÁNDEZ M A, VALENTINE A J. The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaseolus vulgaris[J]. Soil Biology and Biochemistry, 2008, 40(5): 1019-1027. DOI: 1019-1027.10.1016/j.soilbio.2007.11.014.
[57] 李智, 王宏富, 王钰云, 等. 谷子大豆间作对谷子生物性状及产量的影响[J]. 山西农业科学, 2020, 48(2): 193-197, 212. DOI: 10.13304/j.nykjdb.2019.0807.
[58] 邢易梅, 蕫理, 战力峰, 等. 混合接种摩西球囊霉和根瘤菌对紫花苜蓿耐碱能力的影响[J]. 草业学报, 2020, 29(9): 136-145. DOI: 10.11686/cyxb2019509.
[59] 湛瑊, 刘登望, 李林, 等. 花生种子发芽期呼吸酶活性对淹水的响应[J]. 花生学报, 2019, 48(4): 63-66, 74. DOI: 10.14001/j.issn.1002-4093.2019.04.011.
[60] ZHAO T T, LIU S H, YAN S J, et al. Effects of Intercropping and Shading Systems on Tea Photosynthesis and Respiration[J]. Agricultural Science & Technology, 2016, 17(10): 2225-2227. DOI: 10.16175/j.cnki.1009-4229.2016.10.002.
[61] 樊庆笙, 娄无忌. 根瘤菌-豆科植物共生固氮的生理生化研究[J]. 南京农业大学学报, 1984(3): 58-66. DOI: 10.7685/j.issn.1000-2030.1984.03.008.
[62] 刘智蕾. 丛枝菌根真菌提高水稻低温抗性机制: 碳、氮代谢及植物激素的作用[D]. 长春: 中国科学院研究生院(东北地理与农业生态研究所), 2015.
[63] NASEEM H, AHSAN M, SHAHID M A, et al. Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance[J]. Journal of Basic Microbiology, 2018, 58(12): 1009-1022. DOI: 10.1002/jobm.201800309.
[64] 周思婕, 张敏, 王平. 植物质膜H+-ATP酶对环境胁迫因子的响应研究进展[J]. 应用与环境生物学报, 2021, 27(2): 485-494. DOI: 10.19675/j.cnki.1006-687x.2020.02022.
[65] FALHOF J, PEDERSEN J T, FUGLSANG A T, et al. Plasma membrane H+-ATPase regulation in the center of plant physiology[J]. Molecular Plant, 2016, 9(3): 323-337. DOI: 10.1016/j.molp.2015.11.002.
[66] HARO H, SANON K B, LE ROUX C, et al. Improvement of cowpea productivity by rhizobial and mycorrhizal inoculation in Burkina Faso[J]. Symbiosis, 2018, 74(2): 107-120. DOI: 10.1007/s13199-017-0478-3.
[67] WANG X C, WU X L, DING G H, et al. Analysis of grain yield differences among soybean cultivars under maize-soybean intercropping[J]. Agronomy, 2020, 10(1): 110-126. DOI: 10.3390/agronomy10010110.
[68] 周小宇, 郑慧芬, 潘峰, 等. AMF和饭豆根瘤菌对饭豆、玉米套种促生作用的研究[J]. 生物学杂志, 2003, 20(3): 12-13, 28. DOI: 10.3969/j.issn.2095-1736.2003.03.004.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HU Jinming, WEI Duqu. Hybrid Projective Synchronization of Fractional-order PMSM with Different Orders[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 1 -8 .
[2] WU Kangkang, ZHOU Peng, LU Ye, JIANG Dan, YAN Jianghong, QIAN Zhengcheng, GONG Chuang. FIR Equalizer Based on Mini-batch Gradient Descent Method[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 9 -20 .
[3] LIU Dong, ZHOU Li, ZHENG Xiaoliang. A Very Short-term Electric Load Forecasting Based on SA-DBN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 21 -33 .
[4] ZHANG Weibin, WU Jun, YI Jianbing. Research on Feature Fusion Controlled Items Detection Algorithm Based on RFB Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 34 -46 .
[5] WANG Jinyan, HU Chun, GAO Jian. An OBDD Construction Method for Knowledge Compilation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 47 -54 .
[6] LU Miao, HE Dengxu, QU Liangdong. Grey Wolf Optimization Algorithm Based on Elite Learning for Nonlinear Parameters[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 55 -67 .
[7] LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68 -78 .
[8] LI Songtao, LI Qunhong, ZHANG Wen. Co-dimension-two Grazing Bifurcation and Chaos Control of Three-degree-of-freedom Vibro-impact Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 79 -92 .
[9] ZHAO Hongtao, LIU Zhiwei. Decompositions of λ-fold Complete Bipartite 3-uniform Hypergraphs λK(3)n,n into Hypergraph Triangular Bipyramid[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 93 -98 .
[10] LI Meng, CAO Qingxian, HU Baoqing. Spatial-temporal Analysis of Continental Coastline Migration from 1960 to 2018 in Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 99 -108 .