Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (5): 184-192.doi: 10.16088/j.issn.1001-6600.2023072701

Previous Articles     Next Articles

Evaluation on Waterlogging Tolerance of Different Peanut Varieties at Seeding Stage

HUANG Li1,2, LIU Xinglin3, HU Qiuling1,2, HE Shan1,2, DUN Shukun1,2, WANG Haimiao1,2*   

  1. 1. College of Life Sciences, Guangxi Normal University, Guilin Guangxi 541006, China;
    2. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    3. College of Agriculture, Guangxi University, Nanning Guangxi 530004, China
  • Received:2023-07-27 Revised:2023-12-30 Online:2024-09-25 Published:2024-10-11

Abstract: In order to study the difference of tolerance to waterlogging of commonly planted peanut varieties in China,the germination rate,SPAD value,root length,plant height,root biomass and other related indexes of different varieties were measured in a pot experiment at the seeding stage with normal moisture as the control group, and the waterlogging stress treatment was set for 48 hours,the waterlogging resistance of different peanut varieties was comprehensively evaluated to screen out peanut varieties with significant difference in waterlogging tolerance. The results showed that the morphological establishment in peanut seedling stage was inhibited to different degrees by waterlogging. Compared with the control groups,the root fresh weight,aboveground fresh weight,root biomass,aboveground biomass,and plant biomass of peanut under waterlogged conditions were decreased by 52.24%,45.43%,54.22%,37.84%,and 41.81%,respectively. Under waterlogging stress,the average coefficient of variation value of the above-ground morphological indicators was 32.48,while the average coefficient of variation value of the root morphological indicators reached 38.62. The relative values of root fresh weight,plant fresh weight,root length,plant height and SPAD value were used as indicators to evaluate the waterlogging-tolerant in peanut. The cluster analysis was conducted to classify 16 peanut varieties in this study into two categories of strong and weak waterlogging resistance,which laid a good theoretical foundation for further research on the waterlogging tolerance mechanism and cultivation of waterlogging-resistant varieties in peanut.

Key words: peanut, seeding stage, growth characteristics, waterlogging, cluster analysis

CLC Number:  S565.2
[1] 国家统计局. 中国统计年鉴2023[M]. 北京: 中国统计出版社, 2023.
[2] HARRISON M T. Climate change benefits negated by extreme heat[J]. Nature Food,2021,2(11):855-856. DOI: 10.1038/s43016-021-00387-6.
[3] 姚亚庆,郑粉莉,关颖慧. 近60年我国旱涝灾情时空特征分析[J]. 干旱地区农业研究,2017,35(1):228-232,263. DOI: 10.7606/j.issn.1000-7601.2017.01.34.
[4] HOSSAIN A,UDDIN S N. Mechanisms of waterlogging tolerance in wheat:Morphological and metabolic adaptations under hypoxia or anoxia[J]. Australian Journal of Crop Science,2011,5(9):1094-1101. DOI: 10.1007/s10343-010-0235-5.
[5] DENNIS E S,DOLFERUS R,ELLIS M,et al. Molecular strategies for improving waterlogging tolerance in plants[J]. Journal of Experimental Botany,2000,51(342):89-97. DOI: 10.1093/jexbot/51.342.89.
[6] SÁNDOR R,EHRHARDT F,GRACE P,et al. Ensemble modelling of carbon fluxes in grasslands and croplands[J]. Field Crops Research,2020,252:107791. DOI: 10.1016/j.fcr.2020.107791.
[7] 李林,刘登望,熊璟,等. 花生生育早期耐涝性室内鉴定对大田期的意义[J]. 作物学报,2008,34(3):477-485. DOI: 10.3321/j.issn:0496-3490.2008.03.019.
[8] GUTIERREZ BOEM F H,LAVADO R S,PORCELLI C A. Note on the effects of winter and spring waterlogging on growth,chemical composition and yield of rapeseed[J]. Field Crops Research,1996,47(2/3):175-179. DOI: 10.1016/0378-4290(96)00025-1.
[9] 李林,邹冬生,刘登望,等. 花生等农作物耐湿涝性研究进展[J]. 中国油料作物学报,2004,26(3):105-110. DOI: 10.3321/j.issn:1007-9084.2004.03.026.
[10] 万书波. 中国花生栽培学[M]. 上海:上海科学技术出版社,2003.
[11] 张智猛,万书波,戴良香,等. 花生抗旱性鉴定指标的筛选与评价[J]. 植物生态学报,2011,35(1):100-109. DOI: 10.3724/SP.J.1258.2011.00100.
[12] 沈一,刘永惠,陈志德,等. 花生幼苗期耐盐品种的筛选与评价[J]. 花生学报,2012,41(1):10-15. DOI: 10.3969/j.issn.1002-4093.2012.01.003.
[13] 曾瑞儿,王鑫悦,侯雪蓥,等. 硅对干旱胁迫下花生幼苗生长和生理特性的影响[J]. 花生学报,2018,47(4):13-18. DOI: 10.14001/j.issn.1002-4093.2018.04.003.
[14] 王鑫悦,曾瑞儿,黄活志,等. 耐低钙花生品种的筛选研究[J]. 花生学报,2022,51(1):49-58. DOI: 10.14001/j.issn.1002-4093.2022.01.007.
[15] 孙东雷,卞能飞,陈志德,等. 花生种质资源表型性状的综合评价及指标筛选[J]. 植物遗传资源学报,2018,19(5): 865-874. DOI: 10.13430/j.cnki.jpgr.20180105001.
[16] ZENG R E,CAO J,LI X,et al. Waterlogging tolerance and recovery capability screening in peanut:a comparative analysis of waterlogging effects on physiological traits and yield[J]. Peer J,2022,10:e12741. DOI: 10.7717/PEERJ.12741.
[17] 高宇,曾瑞儿,姚苏哲,等. 花生氮敏感品种及评价指标的筛选[J]. 华南农业大学学报,2023,44(5):794-802.
[18] 陈婷婷,王苗苗,黄杨,等. 花生种质农艺、产量和品质性状的综合评价[J]. 花生学报,2020,49(4):38-46. DOI: 10.14001/j.issn.1002-4093.2020.04.006.
[19] 鲁成凯,卢家毅,宋晓峰,等. 高油酸花生品种(系)耐碱性评价[J]. 山东农业科学,2023,55(9):25-31. DOI: 10.14083/j.issn.1001-4942.2023.09.004.
[20] 刘瑞,曾源,加央,等. 大麦种质资源芽期耐渍性遗传多样性分析及耐渍种质筛选[J]. 大麦与谷类科学,2023,40(3):1-10. DOI: 10.14069/j.cnki.32-1769/s.2023.03.001.
[21] 孙文韬,张志浩,张古月,等. 耐渍甘蓝型油菜(Brassica napus)种质筛选与评价[J]. 西北农业学报,2023,32(6): 855-865. DOI: 10.7606/j.issn.1004-1389.2023.06.004.
[22] 李继军,陈雅慧,王艺瑾,等.甘蓝型油菜种质资源田间耐渍性评价和耐渍种质资源筛选[J]. 作物学报,2023,49(12):3162-3175.
[23] 宋桂成,余桂红,张鹏,等. 不同小麦品种(系)拔节期耐渍性评价[J]. 作物杂志,2023(5):30-36. DOI: 10.16035/j.issn.1001-7283.2023.05.005.
[24] 胡文河,朱容佳,王婧瑜,等. 高粱种质资源芽期耐涝性综合评价及筛选[J/OL]. 吉林农业大学学报:1-11[2023-11-03]. http://kns.cnki.net/kcms/detail/22.1100.s.20220926.1845.005.html.
[25] BURGESS S S O,ADAMS M A,TURNER N C,et al. Tree roots:conduits for deep recharge of soil water[J]. Oecologia,2001,126:158-165. DOI: 10.1007/s004420000501.
[26] AHMED S,NAWATA E,HOSOKAWA M,et al. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging[J]. Plant Science,2002,163(1):117-123. DOI: 10.1016/S0168-9452(02)00080-8.
[27] 陈杨,李隆,张福锁. 大豆和蚕豆苗期根系生长特征的比较[J]. 应用生态学报,2005,16(11):2112-2116. DOI: 10.3321/j.issn:1001-9332.2005.11.020.
[28] 郑伟,西天一,郭泰,等. 渍水对黑龙江不同年代育成大豆品种特性的影响[J]. 大豆科学,2016,35(6):937-942. DOI: 10.11861/j.issn.1000-9841.2016.06.0937.
[29] ZAMAN M S U,MALIK A I,ERSKINE W,et al. Changes in gene expression during germination reveal pea genotypes with either “quiescence” or “escape” mechanisms of waterlogging tolerance[J]. Plant,Cell & Environment,2019,42(1): 245-258. DOI: 10.1111/pce.13338.
[30] 张馨月,王寅,陈健,等. 水分和氮素对玉米苗期生长、根系形态及分布的影响[J]. 中国农业科学,2019,52(1):34-44. DOI: 10.3864/j.issn.0578-1752.2019.01.004.
[31] 周广生,朱旭彤. 湿害后小麦生理变化与品种耐湿性的关系[J]. 中国农业科学,2002,35(7):777-783. DOI: 10.3321/j.issn:0578-1752.2002.07.008.
[32] 聂玉霞,董亚茹,孙景诗,等. 渍水胁迫对桑树幼苗根系生长的影响[J]. 山西农业科学,2019,47(3):348-350,356. DOI: 10.3969/j.issn.1002-2481.2019.03.13.
[33] 李文静,朱进,彭玉全,等. 淹水胁迫对油麦菜生长、生理和解剖结构的影响[J]. 植物生理学报,2020,56(10):2233-2240. DOI: 10.13592/j.cnki.ppj.2019.0535.
[34] GAO T M,WEI S L,CHEN J,et al. Cytological,genetic,and proteomic analysis of a sesame (Sesamum indicum L) mutant Siyl-1 with yellow-green leaf color[J]. Genes & Genomics,2020,42(1):25-39. DOI: 10.1007/s13258-019-00876-w.
[35] BUNPHAN D,KNOLL J E,ANDERSON W F. Yields of sesame vary dramatically under rain-fed conditions on marginal lands in Thailand[J]. Australian Journal of Crop Science,2020,13(12):2075-2085. DOI: 10.21475/ajcs.19.13.12.p1998.
[36] 刘登望,李林,邹冬生,等. 湿涝胁迫对不同种质花生生长和农艺性状的影响[J]. 中国生态农业学报,2009,17(5): 968-973. DOI: 10.3724/SP.J.1011.2009.00968.
[37] CHOI B H,LEE J I,CHUNG K Y. Influence of flooding time and duration on yield components and grain yield in growing peanuts (Arachis hypogaea L.)[J]. Research Reports of the Rural Development Administration,1986,28(1):175-179. DOI: 10.1177/875512259501100305.
[38] 佟汉文,刘易科,朱展望,等. 作物耐渍鉴定与评价方法的研究进展[J]. 作物杂志,2015(6):10-15. DOI: 10.16035/j.issn.1001-7283.2015.06.002.
[39] 赵伟,李林,戈蕾,等. 不同花生品种幼苗期耐涝性差异分析[J]. 贵州农业科学,2009,37(12):84-86,89. DOI: 10.3969/j.issn.1001-3601.2009.12.025.
[1] XIAO Fei, DING Xusheng, WANG Weihong. Research Progress of Aerobic Granular Sludge Based on Bibliometric Analysis [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 1-14.
[2] SU Lei, LI Junying. Discussion on Classification Standard of Eco-environment Quality in Counties of National Key Eco-functional Areas [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 196-202.
[3] TANG Shao-qing, GENG Yu-peng, ZHANG Qi-wei, LIUZhao-hui, LEI Xiang-lu. Comparison of Growth Characteristics of Different Geographic Populations of Invasive Parthenium hysterophorus under Common Garden Conditions [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 257-262.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Wenbo, DONG Qing, LIU Chao, ZHANG Qi. Fine-grained Intent Recognition from Pediatric Medical Dialogues with Contrastive Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 1 -10 .
[2] GAO Shengxiang, YANG Yuanzhang, WANG Linqin, MO Shangbin, YU Zhengtao, DONG Ling. Multi-level Disentangled Personalized Speech Synthesis for Out-of-Domain Speakers Adaptation Scenarios[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 11 -21 .
[3] ZHU Gege, HUANG Anshu, QIN Yingying. Analysis of Development Trend of International Mangrove Research Based on Web of Science[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 1 -12 .
[4] HE Jing, FENG Yuanliu, SHAO Jingwen. Research Progress on Multi-source Data Fusion Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 13 -27 .
[5] ZUO Junyuan, LI Xintong, ZENG Zihan, LIANG Chao, CAI Jinjun. Recent Advances on Metal-Organic Framework-Based Catalysts for Selective Furfural Hydrogenation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 28 -38 .
[6] TAN Quanwei, XUE Guijun, XIE Wenju. Short-Term Heating Load Prediction Model Based on VMD and RDC-Informer[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 39 -51 .
[7] LIU Changping, SONG Shuxiang, JIANG Pinqun, CEN Mingcan. Differential Passive N-path Filter Based on Switched Capacitors[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 52 -60 .
[8] WANG Dangshu, SUN Long, DONG Zhen, JIA Rulin, YANG Likang, WU Jiaju, WANG Xinxia. Parameter Optimization Design of Full-Bridge LLC Resonant Converter under Variable Load[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 61 -71 .
[9] ZHANG Jinzhong, WEI Duqu. Fixed Time Bounded Control of PMSM Chaotic Systems without Initial State Constraints[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 72 -78 .
[10] TU Zhirong, LING Haiying, LI Guo, LU Shenglian, QIAN Tingting, CHEN Ming. Lightweight Passion Fruit Detection Method Based on Improved YOLOv7-Tiny[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 79 -90 .