Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (5): 13-27.doi: 10.16088/j.issn.1001-6600.2023101702

Previous Articles     Next Articles

Research Progress on Multi-source Data Fusion Based on CiteSpace

HE Jing1,2*, FENG Yuanliu1, SHAO Jingwen1   

  1. 1. Institute for Advanced Studies in Humanities and Social Sciences, Beihang University, Beijing 100191, China;
    2. Beijing Key Laboratory of Urban Spatial Information Engineering(Beijing Institute of Surveying and Mapping), Beijing 100038, China
  • Received:2023-10-17 Revised:2024-03-05 Online:2024-09-25 Published:2024-10-11

Abstract: The explosive growth of information provides a realistic foundation for the study of multi-source data fusion,continuously expanding its scope of data incorporation and application prospects. The advancement of artificial intelligence technologies further offers innovative possibilities. To sort out the historical context,current status,and frontier trends of multi-source data fusion research,this paper utilizes CiteSpace software to conduct a visual analysis of relevant studies in the CNKI and Web of Science (WOS) databases,focusing on publication volume by year,institutional co-occurrence,author co-occurrence,keyword co-occurrence,keyword clustering,and prominent words from 1992 to 2022. The results indicate that in recent years,research on this topic,both domestically and internationally,has progressively matured,with unification of concepts and expansion of integrated methods in interdisciplinary fields,entering a period of significant development. Chinese research institutions and author networks are relatively loose,with focused hotspots on data fusion-centric information fusion,multi-source heterogeneous data,etc.,characterized by emphasis on cross-sectoral integration,algorithm optimization,and cross-disciplinary applications. In contrast,foreign research institutions and author networks are more mature and stable,with a broader range of hotspots including multi-source information fusion,lidar data,etc.,characterized by emphasis on heterogeneous integration and deep insights. In the future,related research will evolve alongside the development of artificial intelligence technology,delving into more diverse advanced algorithm designs and specific scenario applications. The research findings can assist researchers in topic selection and frontier identification,contributing to the improvement of research quality and innovative development.

Key words: multi-source data fusion, knowledge graphs, CiteSpace, visual analysis, research hotspot

CLC Number:  TP391
[1] STEINBERG A N, BOWMAN C L, WHITE F E. Revisions to the JDL data fusion model[C] // Proceedings Volume 3719: Sensor Fusion: Architectures, Algorithms, and Applications III. Bellingham, WA: SPIE, 1999: 430-441. DOI: 10.1117/12.341367.
[2] 于佳会, 刘佳静, 郑建明. 多源多维数据融合研究态势: 理论、方法与应用[J]. 情报杂志, 2022, 41(5): 133-138, 207. DOI: 10.3969/j.issn.1002-1965.2022.05.021.
[3] 王臻, 刘东, 徐重酉, 等. 新型电力系统多源异构数据融合技术研究现状及展望[J]. 中国电力, 2023, 56(4): 1-15. DOI: 10.11930/j.issn.1004-9649.202211077.
[4] 张良培, 何江, 杨倩倩, 等. 数据驱动的多源遥感信息融合研究进展[J]. 测绘学报, 2022, 51(7): 1317-1337. DOI: 10.11947/j.AGCS.2022.20220171.
[5] 李瑛, 颜廷龙. 航空大数据的融合及挖掘技术综述[J]. 航空计算技术, 2020, 50(6): 124-128. DOI: 10.3969/j.issn.1671-654X.2020.06.029.
[6] 苏小玉, 徐奎奎. 网络安全态势感知中数据融合算法应用综述[J]. 河北省科学院学报, 2020, 37(2): 37-44. DOI: 10.16191/j.cnki.hbkx.2020.02.007.
[7] 师春香, 潘旸, 谷军霞, 等. 多源气象数据融合格点实况产品研制进展[J]. 气象学报, 2019, 77(4): 774-783. DOI: 10.11676/qxxb2019.043.
[8] 孙群. 多源矢量空间数据融合处理技术研究进展[J]. 测绘学报, 2017, 46(10): 1627-1636. DOI: 10.11947/j.AGCS.2017.20170387.
[9] 祁友杰, 王琦. 多源数据融合算法综述[J]. 航天电子对抗, 2017, 33(6): 37-41. DOI: 10.16328/j.htdz8511.2017.06.009.
[10] 王声培, 云雅娟. 洛特卡定律、普赖斯定律和我国数学科学文献[J]. 图书情报工作, 1994, 38(3): 21-24.
[11] 陶飞, 程颖, 程江峰, 等. 数字孪生车间信息物理融合理论与技术[J]. 计算机集成制造系统, 2017, 23(8): 1603-1611. DOI: 10.13196/j.cims.2017.08.001.
[12] 张明华. 基于WLAN的室内定位技术研究[D]. 上海: 上海交通大学, 2009.
[13] 李良福, 陈卫东, 高强, 等. 基于深度学习的光电系统智能目标识别[J]. 兵工学报, 2022, 43(增刊1): 162-168. DOI: 10.12382/bgxb.2022.A004.
[14] 蒋秉川, 万刚, 许剑, 等. 多源异构数据的大规模地理知识图谱构建[J]. 测绘学报, 2018, 47(8): 1051-1061. DOI: 10.11947/j.AGCS.2018.20180113.
[15] 武法提, 黄石华. 基于多源数据融合的共享教育数据模型研究[J]. 电化教育研究, 2020, 41(5): 59-65, 103. DOI: 10.13811/j.cnki.eer.2020.05.009.
[16] 王国法, 任怀伟, 赵国瑞, 等. 智能化煤矿数据模型及复杂巨系统耦合技术体系[J]. 煤炭学报, 2022, 47(1): 61-74. DOI: 10.13225/j.cnki.jccs.YG21.1860.
[17] 琚春华, 邹江波, 傅小康. 融入区块链技术的大数据征信平台的设计与应用研究[J]. 计算机科学, 2018, 45(11A): 522-526.
[18] 涂伟, 曹劲舟, 高琦丽, 等. 融合多源时空大数据感知城市动态[J]. 武汉大学学报(信息科学版), 2020, 45(12): 1875-1883. DOI: 10.13203/j.whugis20200535.
[19] 苏跃江, 温惠英, 韦清波, 等. 多源数据融合驱动的居民出行特征分析方法[J]. 交通运输系统工程与信息, 2020, 20(5): 56-63. DOI: 10.16097/j.cnki.1009-6744.2020.05.009.
[20] 郭科, 彭继兵, 许强, 等. 滑坡多点数据融合中的多传感器目标跟踪技术应用[J]. 岩土力学, 2006, 27(3): 479-481. DOI: 10.3969/j.issn.1000-7598.2006.03.029.
[21] 蓝金辉, 马宝华, 蓝天, 等. D-S证据理论数据融合方法在目标识别中的应用[J]. 清华大学学报(自然科学版), 2001, 41(2): 53-55, 59. DOI: 10.3321/j.issn:1000-0054.2001.02.014.
[22] 张永强, 马宪民, 梁兰. 基于RBF的模糊积分多传感器数据融合的刮板输送机电机故障诊断[J]. 西安科技大学学报, 2016, 36(2): 271-274. DOI: 10.13800/j.cnki.xakjdxxb.2016.0219.
[23] 杨鹏民. 基于嵌入式Linux与深度视觉的井下多轴机械臂系统设计[J]. 煤炭工程, 2022, 54(12): 90-96. DOI: 10.11799/ce202212017.
[24] 马坤, 张永谋, 吴红刚, 等. 基于多传感器数据融合分析的路堑滑坡模型试验研究[J]. 防灾减灾工程学报, 2022, 42(4): 653-663. DOI: 10.13409/j.cnki.jdpme.20201229002.
[25] 马立玲, 郭建, 汪首坤, 等. 基于改进CNN-GRU网络的多源传感器故障诊断方法[J]. 北京理工大学学报, 2021, 41(12): 1245-1252. DOI: 10.15918/j.tbit1001-0645.2020.183.
[26] YANG L, XU W H, ZHANG X Y, et al.Multi-granulation method for information fusion in multi-source decision information system[J]. International Journal of Approximate Reasoning, 2020, 122: 47-65. DOI: 10.1016/j.ijar.2020.04.003.
[27] ANDERSON M C, YANG Y, XUE J, et al. Interoperability of ECOSTRESS and landsat for mapping evapotranspiration time series at sub-field scales[J]. Remote Sensing of Environment, 2021, 252: 112189. DOI: 10.1016/j.rse.2020.112189.
[28] CAI B P, LIU Y H, FAN Q, et al.Multi-source information fusion based fault diagnosis of ground-source heat pump using Bayesian network[J]. Applied Energy, 2014, 114: 1-9. DOI: 10.1016/j.apenergy.2013.09.043.
[29] LUO R B, LIAO W Z, ZHANG H Y, et al. Classification of cloudy hyperspectral image and LiDAR data based on feature fusion and decision fusion[C] //2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Piscataway, NJ: IEEE Press, 2016: 2518-2521. DOI: 10.1109/IGARSS.2016.7729650.
[30] ZHANG Z, YANG M Y, ZHOU M. Multi-source hierarchical conditional random field model for feature fusion of remote sensing images and liDAR data[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2013, XL-1/W1: 389-392. DOI: 10.5194/isprsarchives-XL-1-W1-389-2013.
[31] CHEN Z Y, GAO B B, DEVEREUX B. State-of-the-art: DTM generation using airborne LIDAR data[J]. Sensors, 2017, 17(1): 150. DOI: 10.3390/s17010150.
[32] XING B Y, ZHU Q M, PAN F, et al. Marker-based multi-sensor fusion indoor localization system for micro air vehicles[J]. Sensors, 2018, 18(6): 1706. DOI: 10.3390/s18061706.
[33] XU Y H, DU B, ZHANG L P. Multi-Source remote sensing data classification via fully convolutional networks and post-classification processing[C] //IGARSS 2018: 2018 IEEE International Geoscience and Remote Sensing Symposium. Piscataway, NJ: IEEE Press, 2018: 3852-3855. DOI: 10.1109/IGARSS.2018.8518295.
[34] ZHU Y X, LI W, ZHANG M M, et al. Joint feature extraction for multi-source data using similar double-concentrated network[J]. Neurocomputing, 2021, 450: 70-79. DOI: 10.1016/j.neucom.2021.03.088.
[35] LIU R W, GUO Y, NIE J T, et al. Intelligent edge-enabled efficient multi-source data fusion for autonomous surface vehicles in maritime internet of things[J]. IEEE Transactions on Green Communications and Networking, 2022, 6(3): 1574-1587. DOI: 10.1109/TGCN.2022.3158004.
[36] LIU P Y, PAN X, REN M, et al. Evidence theory fusion method based on variable granulation rough set[C] // 2016 8th International Conference on Information Technology in Medicine and Education (ITME). Piscataway, NJ: IEEE Press, 2016: 534-538. DOI: 10.1109/ITME.2016.0127.
[37] LU C Q, WANG S P, WANG X J. A multi-source information fusion fault diagnosis for aviation hydraulic pump based on the new evidence similarity distance[J]. Aerospace Science and Technology, 2017, 71: 392-401. DOI: 10.1016/j.ast.2017.09.040.
[38] XIA J, FENG Y Q, LIU L N, et al. An evidential reliability indicator-based fusion rule for dempster-shafer theory and its applications in classification[J]. IEEE Access, 2018, 6: 24912-24924. DOI: 10.1109/ACCESS.2018.2831216.
[39] TAO X L, LIU L Y, ZHAO F, et al. Ontology and weighted DS evidence theory-based vulnerability data fusion method[J]. Journal of Universal Computer Science, 2019, 25(3): 203-221. DOI: 10.3217/JUCS-025-03-0203.
[40] TANG Y C, WU D D, LIU Z J. A new approach for generation of generalized basic probability assignment in the evidence theory[J]. Pattern Analysis and Applications, 2021, 24(3): 1007-1023. DOI: 10.1007/s10044-021-00966-0.
[41] POHL C. Remote sensing image fusion in the context of digital earth[J]. IOP Conference Series: Earth and Environmental Science, 2014, 18(1): 012002. DOI: 10.1088/1755-1315/18/1/012002.
[42] BACHOFER F, ESCH T, BALHAR J, et al. The urban thematic exploitation platform-processing,analysing and visualization of heterogeneous data for urban applications[C] // 2019 Joint Urban Remote Sensing Event. Piscataway, NJ: IEEE Press, 2019: 1-3. DOI: 10.1109/JURSE.2019.8809016.
[43] LIU R, GREVE K, CUI P Y, et al. Collaborative positioning method via GPS/INS and RS/MO multi-source data fusion in multi-target navigation[J]. Survey Review, 2022, 54(383): 95-105. DOI: 10.1080/00396265.2021.1883962.
[44] PARIS C, KOTOWSKA M M, ERASMI S, et al. A novel approach for environmental monitoring based on the integration of multi-temporal multi-source earth observation data and field surveys in a spatio-temporal framework[C] // IGARSS 2022: 2022 IEEE International Geoscience and Remote Sensing Symposium. Piscataway, NJ: IEEE Press, 2022: 5897-5900. DOI: 10.1109/IGARSS46834.2022.9884130.
[45] SHAO Z F, GUI C, LI D R, et al.Spatio-temporal-spectral-angular observation model that integrates observations from UAV and mobile mapping vehicle for better urban mapping[J]. Geo-spatial Information Science, 2021, 24(4): 615-629. DOI: 10.1080/10095020.2021.1961567.
[46] XU P P, TSENDBAZAR N E, HEROLD M, et al. Improving the characterization of global aquatic land cover types using multi-source earth observation data[J]. Remote Sensing of Environment, 2022, 278: 113103. DOI: 10.1016/j.rse.2022.113103.
[47] 王璇, 李春升, 周荫清. 多传感器信息融合技术[J]. 北京航空航天大学学报, 1994, 20(4): 402-406.
[48] GUNATILAKA A H, BAERTLEIN B A. Feature-level and decision-level fusion of noncoincidently sampled sensors for land mine detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6): 577-589. DOI: 10.1109/34.927459.
[49] 钱伟, 何志祥, 张德银. 基于模糊神经网络的火灾传感器特征参数融合算法[J]. 传感技术学报, 2017, 30(12): 1906-1911. DOI: 10.3969/j.issn.1004-1699.2017.12.021.
[50] SUN M, DOU H T, LI Q Z, et al. Quality estimation of deep web data sources for data fusion[J]. Procedia Engineering, 2012, 29: 2347-2354. DOI: 10.1016/j.proeng.2012.01.313.
[51] 陈海燕, 甄霞军, 赵涛涛. 一种自适应图像融合数据增强的高原鼠兔目标检测方法[J]. 农业工程学报, 2022, 38(增刊): 170-175. DOI: 10.11975/j.issn.1002-6819.2022.z.019.
[52] DECKER K T, BORGHETTI B J. Composite style pixel and point convolution-based deep fusion neural network architecture for the semantic segmentation of hyperspectral and lidar data[J]. Remote Sensing, 2022, 14(9): 2113. DOI: 10.3390/rs14092113.
[1] ZHU Gege, HUANG Anshu, QIN Yingying. Analysis of Development Trend of International Mangrove Research Based on Web of Science [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 1-12.
[2] ZHAI Yanhao, WANG Yanwu, LI Qiang, LI Jingkun. Progress of Dissolved Organic Matter in Inland Water by Three-Dimensional Fluorescence Spectroscopy Based on CiteSpace [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 34-46.
[3] DONG Shulong, MA Jiangming, XIN Wenjie. Research Progress and Trend of Landscape Visual Evaluation —Knowledge Atlas Analysis Based on CiteSpace [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 1-13.
[4] ZHAO Keyi, ZHANG Ningning, XUE Jieyi, LI Guangluan, LI Yi, YU Fangming, LIU Kehui. CiteSpace Visualization Analysis of Heavy Metal Hyperaccumulators [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 191-209.
[5] ZHANG Xiaoli, CHEN Zening, WU Zhengjun. Analysis of the Evolution of Research Hotspots on Lizards and Climate Change: Based on the Web of Science Database [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 332-341.
[6] TONG Lingchen, LI Qiang, YUE Pengpeng. Research Progress and Prospects of Karst Soil Organic Carbon Based on CiteSpace [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 22-34.
[7] GUAN Xiaojin, ZHAO Keyi, LIU Shiling, LI Yi, YU Fangming, LI Chunming, LIU Kehui. Global Trends and Hot Topics in the Field of Manganese Phytoremediation over the Past Three Decades: A Review Based on Citespace Visualization [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 44-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Wenbo, DONG Qing, LIU Chao, ZHANG Qi. Fine-grained Intent Recognition from Pediatric Medical Dialogues with Contrastive Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 1 -10 .
[2] GAO Shengxiang, YANG Yuanzhang, WANG Linqin, MO Shangbin, YU Zhengtao, DONG Ling. Multi-level Disentangled Personalized Speech Synthesis for Out-of-Domain Speakers Adaptation Scenarios[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 11 -21 .
[3] ZHU Gege, HUANG Anshu, QIN Yingying. Analysis of Development Trend of International Mangrove Research Based on Web of Science[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 1 -12 .
[4] ZUO Junyuan, LI Xintong, ZENG Zihan, LIANG Chao, CAI Jinjun. Recent Advances on Metal-Organic Framework-Based Catalysts for Selective Furfural Hydrogenation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 28 -38 .
[5] TAN Quanwei, XUE Guijun, XIE Wenju. Short-Term Heating Load Prediction Model Based on VMD and RDC-Informer[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 39 -51 .
[6] LIU Changping, SONG Shuxiang, JIANG Pinqun, CEN Mingcan. Differential Passive N-path Filter Based on Switched Capacitors[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 52 -60 .
[7] WANG Dangshu, SUN Long, DONG Zhen, JIA Rulin, YANG Likang, WU Jiaju, WANG Xinxia. Parameter Optimization Design of Full-Bridge LLC Resonant Converter under Variable Load[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 61 -71 .
[8] ZHANG Jinzhong, WEI Duqu. Fixed Time Bounded Control of PMSM Chaotic Systems without Initial State Constraints[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 72 -78 .
[9] TU Zhirong, LING Haiying, LI Guo, LU Shenglian, QIAN Tingting, CHEN Ming. Lightweight Passion Fruit Detection Method Based on Improved YOLOv7-Tiny[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 79 -90 .
[10] DU Shuaiwen, JIN Ting. A Deep Hybrid Recommendation Algorithm Based on User Behavior Characteristics[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 91 -100 .