Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (1): 91-101.doi: 10.16088/j.issn.1001-6600.2023051805

Previous Articles     Next Articles

Classification of Diabetic Retinopathy Based on Split Residual Network

XIAO Yuting1, LÜ Xiaoqi1,2*, GU Yu1, LIU Chuanqiang1   

  1. 1. Key Laboratory of Pattern Recognition and Intelligent Image Processing (Inner Mongolia University of Science and Technology), Baotou Neimenggu 014010, China;
    2. School of Information Engineering, Inner Mongolia University of Technology, Hohhot Neimenggu 010051, China
  • Received:2023-05-18 Revised:2023-09-13 Online:2024-01-25 Published:2024-01-19

Abstract: Diabetic retinopathy is a common complication of diabetes. A classification algorithm based on split residual network is proposed to improve the classification accuracy of diabetic retinopathy images. Through the fusion of normalized attention, the ability to identify key feature information is enhanced, which makes the model more targeted for extracting lesion feature information. The global context module is used to comprehensively consider the feature information learned from different scales and network layers, and further contact the characteristics of diabetic retinopathy in different periods to enhance the expression ability of the model. The output structure uses multi-branch structure to classify images, which avoids the problem that the uneven distribution of data sets affects the classification accuracy. Experimental results show that the model accuracy is 94.86%, and other evaluation indexes are improved compared with the original backbone network model. The proposed model has good performance, and the high-precision diagnosis and grading of diabetic retina images are realized.

Key words: medical image processing, deep learning, diabetic retinopathy, attention mechanism, split residual network

CLC Number:  TP391.41
[1] 张瑶, 徐前威, 周冉冉, 等. 桃核承气汤辨治糖尿病视网膜病变的机理初探[J]. 中国中医基础医学杂志, 2023, 29(7): 1156-1159. DOI: 10.19945/j.cnki.issn.1006-3250.2023.07.025.
[2] 徐盼盼, 陈长骏, 闫志文, 等. 基于MA-DRNet的糖尿病视网膜病变等级识别方法[J]. 科学技术与工程, 2023, 23(3): 1168-1175. DOI: 10.12404/j.issn.1671-1815.2023.23.03.01168.
[3] DUTTA S, MANIDEEP B C, BASHA S M, et al. Classification of diabetic retinopathy images by using deep learning models[J]. International Journal of Grid and Distributed Computing, 2018, 11(1): 89-106. DOI: 10.14257/ijgdc.2018.11.1.09.
[4] GULSHAN V, PENG L, CORAM M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316(22): 2402-2410. DOI: 10.1001/jama.2016.17216.
[5] LIU Z, MAO H Z, WU C Y, et al. A ConvNet for the 2020s[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2022: 11966-11976. DOI: 10.1109/CVPR52688.2022.01167.
[6] XIE S N, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2017: 5987-5995. DOI: 10.1109/CVPR.2017.634.
[7] BELLO I, FEDUS W, DU X Z, et al. Revisiting ResNets: improved training and scaling strategies[EB/OL]. (2021-03-13)[2023-05-18]. https://arxiv.org/abs/2103.07579. DOI: 10.48550/arXiv.2103.07579.
[8] BELLO I, ZOPH B, VASUDEVAN V, et al. Neural optimizer search with reinforcement learning[EB/OL]. (2017-09-22)[2023-05-18]. https://arxiv.org/abs/1709.07417. DOI: 10.48550/arXiv.1709.07417.
[9] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. DOI: 10.1109/TPAMI.2019.2913372.
[10] 郑雯, 沈琪浩, 任佳. 基于Improved DR-Net算法的糖尿病视网膜病变识别与分级[J]. 光学学报, 2021, 41(22): 2210002. DOI: 10.3788/AOS202141.2210002.
[11] 顾婷菲, 郝鹏翼, 白琮, 等. 结合多通道注意力的糖尿病性视网膜病变分级[J]. 中国图象图形学报, 2021, 26(7): 1726-1736. DOI: 10.11834/jig.200518.
[12] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Advances in Neural Information Processing Systems 30 (NIPS 2017). Red Hook, NY: Curran Associates Inc., 2017: 6000-6010.
[13] MA Z Q, XIE Q X, XIE P X, et al. HCTNet: a hybrid ConvNet-transformer network for retinal optical coherence tomography image classification[J]. Biosensors, 2022, 12(7): 542. DOI: 10.3390/bios12070542.
[14] ZHANG H, WU C R, ZHANG Z Y, et al. ResNeSt: split-attention networks[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Los Alamitos, CA: IEEE Computer Society, 2022: 2735-2745. DOI: 10.1109/CVPRW56347.2022.00309.
[15] 吴军, 欧阳艾嘉, 张琳. 基于多头注意力机制的磷酸化位点预测模型[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 161-171. DOI: 10.16088/j.issn.1001-6600.2021071301.
[16] LIU Y C, SHAO Z R, TENG Y Y, et al. NAM: normalization-based attention module[EB/OL]. (2021-11-24)[2023-05-18]. https://arxiv.org/abs/2111.12419. DOI: 10.48550/arXiv.2111.12419.
[17] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[EB/OL]. (2018-07-18)[2023-05-18]. https://arxiv.org/abs/1807.06521. DOI: 10.48550/arXiv.1807.06521.
[18] 谢云霞, 黄海于, 胡建斌. 基于深度卷积神经网络的糖尿病视网膜病变分期及病灶检测[J]. 计算机应用, 2020, 40(8): 2460-2464. DOI: 10.11772/j.issn.1001-9081.2019122198.
[19] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[EB/OL]. (2015-03-02)[2023-05-18]. https://arxiv.org/abs/1502.03167. DOI: 10.48550/arXiv.1502.03167.
[20] 马青柯. 眼底图像检测和分析系统的设计与开发[D]. 广州: 暨南大学, 2018.
[21] 欧阳继红, 郭泽琪, 刘思光. 糖尿病视网膜病变分期双分支混合注意力决策网络[J]. 吉林大学学报(工学版), 2022, 52(3): 648-656. DOI: 10.13229/j.cnki.jdxbgxb20200813.
[22] LI Y H, YAO T, PAN Y W, et al. Contextual transformer networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(2): 1489-1500. DOI: 10.1109/TPAMI.2022.3164083.
[23] KIM Y, PARK W, ROH M C, et al. GroupFace: learning latent groups and constructing group-based representations for face recognition[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2020: 5620-5629. DOI: 10.1109/CVPR42600.2020.00566.
[24] LI T, GAO Y Q, WANG K, et al. Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening[J]. Information Sciences, 2019, 501: 511-522. DOI: 10.1016/j.ins.2019.06.011.
[25] KHALIFA N E M, LOEY M, TAHA M H N, et al. Deep transfer learning models for medical diabetic retinopathy detection[J]. Acta Informatica Medica, 2019, 27(5): 327-332. DOI: 10.5455/aim.2019.27.327-332.
[26] GU Y, LU X Q, YANG L D, et al. Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs[J]. Computers in Biology and Medicine, 2018, 103: 220-231. DOI: 10.1016/j.compbiomed.2018.10.011.
[27] 万黎明, 张小乾, 刘知贵, 等. 基于高效通道注意力的UNet肺结节CT图像分割[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 66-75. DOI: 10.16088/j.issn.1001-6600.2021071202.
[28] GRAHAM B. Kaggle diabetic retinopathy detection competition report[R/OL]. (2015-08-06)[2023-05-18]. https://storage.googleapis.com/kaggle-forum-message-attachments/88655/2795/competitionreport.pdf.
[29] 纪泽宇, 张兴军, 付哲, 等. 分布式深度学习框架下基于性能感知的DBS-SGD算法[J]. 计算机研究与发展, 2019, 56(11): 2396-2409. DOI: 10.7544/issn1000-1239.2019.20180880.
[30] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2017: 2261-2269. DOI: 10.1109/CVPR.2017.243.
[31] DING X H, ZHANG X Y, MA N N, et al. RepVGG: making VGG-style ConvNets great again[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2021: 13728-13737. DOI: 10.1109/CVPR46437.2021.01352.
[32] 王明智, 马志强, 赵锋锋, 等. 基于代价敏感正则化和EfficientNet的糖尿病视网膜病变分类方法[J]. 液晶与显示, 2022, 37(12): 1626-1635. DOI: 10.37188/CJLCD.2022-0161.
[33] 宋若仙, 曹鹏, 赵大哲. 结合域适应学习的糖尿病视网膜病变分级诊断[J]. 中国图象图形学报, 2022, 27(11): 3356-3370. DOI: 10.11834/jig.210411.
[34] 程小辉, 李贺军, 邓昀, 等. 基于ME-ANet模型的糖尿病视网膜病变分级[J]. 广西科学, 2022, 29(2): 249-259. DOI: 10.13656/j.cnki.gxkx.20220526.004.
[35] 李家昱, 陈明惠, 杨瑞君, 等. 糖尿病视网膜病变眼底图像筛查研究[J]. 中国激光, 2022, 49(11): 1107001. DOI: 10.3788/CJL202249.1107001.
[36] 梁礼明, 彭仁杰, 冯骏, 等. 基于跨层双线性池化的糖尿病视网膜病变分级算法研究[J]. 生物医学工程学杂志, 2022, 39(5): 928-936. DOI: 10.7507/1001-5515.202104038.
[37] 牛学德, 高丙朋, 任荣荣, 等. 基于轻量级CNN的作物病虫害识别及安卓端应用[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 59-68. DOI: 10.16088/j.issn.1001-6600.2022021601.
[38] 魏明军, 周太宇, 纪占林, 等. 基于YOLOv3的公共场所口罩佩戴检测方法[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 76-86. DOI: 10.16088/j.issn.1001-6600.2022030402.
[1] XI Lingfei, Yilihamu Yaermaimaiti, LIU Yajie. Surface Defect Detection Method for Aluminum Profile Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 111-119.
[2] GAO Fei, GUO Xiaobin, YUAN Dongfang, CAO Fujun. Improved PINNs Method for Solving the Convective Dominant Diffusion Equation with Boundary Layer [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 33-50.
[3] SONG Guanwu, CHEN Zhiming, LI Jianjun. Remote Sensing Image Classification with Cascade Attention Based on ResNet-50 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 80-91.
[4] WU Zhengqing, CAO Hui, LIU Baokai. Chinese Fake Review Detection Based on Attention Convolutional Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 26-36.
[5] JIANG Yibo, LIU Huijia, WU Tian. Research on Identification of Lightning Overvoltage in Transmission Line by Improved Residual Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 74-83.
[6] HUANG Yeqi, WANG Mingwei, YAN Rui, LEI Tao. Surface Quality Detection of Diamond Wire Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 123-134.
[7] DENG Xizhen, JIANG Ming, CEN Mingcan, LUO Yuling. Ransomware Classification Based on Entropy Image Static Analysis Technology [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 91-104.
[8] YANG Shuozhen, ZHANG Long, WANG Jianhua, ZHANG Hengyuan. Review of Sound Event Detection [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 1-18.
[9] WANG Luna, DU Hongbo, ZHU Lijun. Stacked Capsule Autoencoders Optimization Algorithm Based on Manifold Regularization [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 76-85.
[10] WANG Li’e, WANG Yihui, LI Xianxian. A Multi-source Data Fusion and Privacy Protection Method of POI Recommendation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 87-101.
[11] WANG Yuhang, ZHANG Canlong, LI Zhixin, WANG Zhiwen. Image Captioning According to User’s Intention and Style [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 91-103.
[12] LI Zhengguang, CHEN Heng, LIN Hongfei. Identification of Adverse Drug Reaction on Social Media Using Bi-directional Language Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 40-48.
[13] WAN Liming, ZHANG Xiaoqian, LIU Zhigui, SONG Lin, ZHOU Ying, LI Li. CT Image Segmentation of UNet Pulmonary Nodules Based on Efficient Channel Attention [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 66-75.
[14] ZHANG Ping, XU Qiaozhi. Segmentation of Lung Nodules Based on Multi-receptive Field and Grouping Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 76-87.
[15] LI Yongjie, ZHOU Guihong, LIU Bo. Fusion Algorithm of Face Detection and Head Pose Estimation Based on YOLOv3 Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 95-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LUO Yun-yan, LI Rong-zheng, LI Bing, DING Chen-xu. Optimization of Extraction Process of Alkaloids from Meconopsis horridula Hook. f. & Thomson by Response Surface Methodology[J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(4): 84 -90 .
[2] DONG Shulong, MA Jiangming, XIN Wenjie. Research Progress and Trend of Landscape Visual Evaluation —Knowledge Atlas Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 1 -13 .
[3] GUO Jialiang, JIN Ting. Semantic Enhancement-Based Multimodal Sentiment Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 14 -25 .
[4] WU Zhengqing, CAO Hui, LIU Baokai. Chinese Fake Review Detection Based on Attention Convolutional Neural Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 26 -36 .
[5] LIANG Zhengyou, CAI Junmin, SUN Yu, CHEN Lei. Point Cloud Classification Based on Residual Dynamic Graph Convolution and Feature Enhancement[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 37 -48 .
[6] OUYANG Shuxin, WANG Mingjun, RONG Chuitian, SUN Huabo. Anomaly Detection of Multidimensional QAR Data Based on Improved LSTM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 49 -60 .
[7] LI Yiyang, ZENG Caibin, HUANG Zaitang. Random Attractors for Chemostat Model with Wall Attachment Driven by Fractional Brownian Motion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 61 -68 .
[8] LI Pengbo, LI Yongxiang. Radial Symmetric Solutions of p-Laplace Equations on Exterior Domains[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 69 -75 .
[9] WU Zixian, CHENG Jun, FU Jianling, ZHOU Xinwen, XIE Jialong, NING Quan. Analysis of PI-based Event-Triggered Control Design for Semi-Markovian Power Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 76 -85 .
[10] CHENG Lei, YAN Puxuan, DU Bohao, YE Si, ZOU Huahong. Thermal Stability and Dielectric Relaxation of MOF-2 Synthesized in Aqueous Phase[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 86 -95 .