Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (6): 80-91.doi: 10.16088/j.issn.1001-6600.2023031702

Previous Articles     Next Articles

Remote Sensing Image Classification with Cascade Attention Based on ResNet-50

SONG Guanwu, CHEN Zhiming, LI Jianjun*   

  1. School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha Hunan 410004, China
  • Received:2023-03-17 Revised:2023-06-22 Published:2023-12-04

Abstract: Knowledge distillation can improve the generalization ability of neural networks and solve the problem of insufficient labeled data when classifying remote sensing image scenes. And the high similarity between classes existing in remote sensing images can lead to the loss of intermediate knowledge features. To address this problem, a feature extraction method (SDCASA) based on the self-distillation cascaded attention mechanism is proposed. Firstly, a teacher and student network with shared weights is constructed; then the cascaded attention module is used to refine the features extracted by the deep teacher network while retaining the intermediate edge information filtered by the shallow neural network. Secondly, the refined features are used to guide the student network to learn. Finally, a linear classifier is trained downstream to complete feature classification. The classification accuracies of 85.17%, 90.10%, 91.13% and 85.50%, 92.13%, 91.17% are achieved on three publicly available datasets AID, MLRSNet, and EuroSAT using 20% and 50% of the samples trained, respectively. This method can effectively improve the classification accuracy of remote sensing image scenes and outperforms the mainstream self-supervised image classification methods SimSiam, SwAV, MoCov2, Deepcluster, and has good application value.

Key words: self-distillation, attention mechanism, remote sensing images, self-supervised learning, image classification

CLC Number:  TP751
[1] 张康, 黑保琴, 李盛阳, 等. 基于CNN模型的遥感图像复杂场景分类[J]. 国土资源遥感, 2018, 30(4): 49-55. DOI: 10.6046/gtzyyg.2018.04.08.
[2] 汪晓洲, 石翠萍, 杨焜, 等. 基于深度学习的场景遥感图像分类方法研究[J]. 齐齐哈尔大学学报(自然科学版), 2021, 37(5): 11-15. DOI: 10.3969/j.issn.1007-984X.2021.05.003.
[3] 郭棚跃. 基于深度学习的高光谱遥感图像分类[D]. 桂林: 桂林电子科技大学, 2021. DOI: 10.27049/d.cnki.ggldc.2021.000389.
[4] TAO C, LU W P, QI J, et al. Spatial information considered network for scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(6): 984-988. DOI: 10.1109/LGRS.2020.2992929.
[5] 陈知明, 张江, 邱汉清, 等. 基于密集连接的高分辨率遥感图像分类[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 88-94. DOI: 10.16088/j.issn.1001-6600.2021071503.
[6] 张馨月. 基于DCNN的高分辨率遥感图像场景分类[D]. 长春: 吉林大学, 2019.
[7] 王振国, 陈宏宇, 徐文明. 利用DCNN融合特征对遥感图像进行场景分类[J]. 电子设计工程, 2018, 26(1): 189-193. DOI: 10.3969/j.issn.1674-6236.2018.01.042.
[8] 刘金香, 班伟, 陈宇, 等. 融合多维度CNN的高光谱遥感图像分类算法[J]. 中国激光, 2021, 48(16): 1610003. DOI: 10.3788/CJL202148.1610003.
[9] TAO C, QI J, LU W P, et al. Remote sensing image scene classification with self-supervised paradigm under limited labeled samples[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 8004005. DOI: 10.1109/LGRS.2020.3038420.
[10] JING L L, TIAN Y L. Self-supervised visual feature learning with deep neural networks: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(11): 4037-4058. DOI: 10.1109/TPAMI.2020.2992393.
[11] MAÑAS O, LACOSTE A, GIRÓ-I-NIETO X, et al. Seasonal contrast: unsupervised pre-training from uncurated remote sensing data[C]// 2021 IEEE/CVF International Conference on Computer Vision(ICCV). Los Alamitos, CA: IEEE Computer Society, 2021: 9394-9403. DOI: 10.1109/ICCV48922.2021.00928.
[12] HE K M, FAN H Q, WU Y X, et al. Momentum contrast for unsupervised visual representation learning[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Los Alamitos, CA: IEEE Computer Society, 2020: 9726-9735. DOI: 10.1109/CVPR42600.2020.00975.
[13] CHEN X L, HE K M. Exploring simple Siamese representation learning[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Los Alamitos, CA: IEEE Computer Society, 2021: 15745-15753. DOI: 10.1109/CVPR46437.2021.01549.
[14] CARON M, MISRA I, MAIRAL J, et al. Unsupervised learning of visual features by contrasting cluster assignments[C]// Advances in Neural Information Processing Systems 33(NeurIPS 2020). Red Hook, NY: Curran Associates Inc., 2020: 9912-9924.
[15] HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL].(2015-03-09)[2023-03-17]. http://arxiv.org/abs/1503.02531. DOI: 10.48550/arXiv.1503.02531.
[16] YUE J, FANG L Y, RAHMANI H, et al. Self-supervised learning with adaptive distillation for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5501813. DOI: 10.1109/TGRS.2021.3057768.
[17] ZAGORUYKO S, KOMODAKIS N. Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer[EB/OL].(2017-02-12)[2023-03-17]. http://arxiv.org/abs/1612.03928v3. DOI: 10.48550/arXiv.1612.03928.
[18] 孙显, 杨竹君, 李俊希, 等. 基于知识自蒸馏的轻量化复杂遥感图像精细分类方法[J]. 指挥与控制学报, 2021, 7(4): 365-373. DOI: 10.3969/j.issn.2096-0204.2021.04.0365.
[19] CHEN G Z, ZHANG X D, TAN X L, et al. Training small networks for scene classification of remote sensing images via knowledge distillation[J]. Remote Sensing, 2018, 10(5): 719. DOI: 10.3390/rs10050719.
[20] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Computer Vision-ECCV 2018: LNCS Volume 11211. Cham: Springer Nature Switzerland AG, 2018: 3-19. DOI: 10.1007/978-3-030-01234-2_1.
[21] WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2018: 7794-7803. DOI: 10.1109/CVPR.2018.00813.
[22] FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2019: 3141-3149. DOI: 10.1109/CVPR.2019.00326.
[23] 王元东. 基于ResNet模型的图像分类方法及应用研究[D]. 南昌: 华东交通大学, 2019. DOI: 10.27147/d.cnki.ghdju.2019.000432
[24] 冯凯, 崔弘, 吴锐. 基于3D残差网络的视频哈希检索[J]. 电子设计工程, 2021, 29(22): 128-133. DOI: 10.14022/j.issn1674-6236.2021.22.028.
[25] GRILL J B, STRUB F, ALTCHÉ F, et al. Bootstrap your own latent: a new approach to self-supervised learning[C]// Advances in Neural Information Processing Systems 33(NeurIPS 2020). Red Hook, NY: Curran Associates Inc., 2020: 21271-21284.
[26] XIA G S, HU J W, HU F, et al. AID: a benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3965-3981. DOI: 10.1109/TGRS.2017.2685945.
[27] TAN X W, XIAO Z F, ZHU J J, et al. Transformer-driven semantic relation inference for multilabel classification of high-resolution remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 1884-1901. DOI: 10.1109/JSTARS.2022.3145042.
[28] 苗壮, 王亚鹏, 李阳, 等. 一种鲁棒的双教师自监督蒸馏哈希学习方法[J]. 计算机科学, 2022, 49(10): 159-168. DOI: 10.11896/jsjkx.210800050.
[29] CHEN X L, FAN H Q, GIRSHICK R, et al. Improved baselines with momentum contrastive learning[EB/OL].(2020-03-09)[2023-03-17]. http://arxiv.org/abs/2003.04297. DOI: 10.48550/arXiv.2003.04297.
[30] CARON M, BOJANOWSKI P, JOULIN A, et al. Deep clustering for unsupervised learning of visual features[C]// Computer Vision-ECCV 2018: LNCS Volume 11218. Cham: Springer Nature Switzerland AG, 2018: 139-156. DOI: 10.1007/978-3-030-01264-9_9.
[31] CHENG G, HAN J W, LU X Q. Remote sensing image scene classification: benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10): 1865-1883. DOI: 10.1109/JPROC.2017.2675998.
[32] GUO Y Y, JI J S, LU X K, et al. Global-local attention network for aerial scene classification[J]. IEEE Access, 2019, 7: 67200-67212. DOI: 10.1109/ACCESS.2019.2918732.
[33] TANG X, MA Q S, ZHANG X R, et al. Attention consistent network for remote sensing scene classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2030-2045. DOI: 10.1109/JSTARS.2021.3051569.
[34] WANG D, ZHANG J, DU B, et al. An empirical study of remote sensing pretraining[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5608020. DOI: 10.1109/TGRS.2022.3176603.
[35] AREFEEN M A, NIMI S T, UDDIN M Y S, et al. A lightweight ReLU-based feature fusion for aerial scene classification[C]// 2021 IEEE International Conference on Image Processing(ICIP). Piscataway, NJ: IEEE, 2021: 3857-3861. DOI: 10.1109/ICIP42928.2021.9506524.
[1] WU Zhengqing, CAO Hui, LIU Baokai. Chinese Fake Review Detection Based on Attention Convolutional Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 26-36.
[2] HUANG Yeqi, WANG Mingwei, YAN Rui, LEI Tao. Surface Quality Detection of Diamond Wire Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 123-134.
[3] DENG Xizhen, JIANG Ming, CEN Mingcan, LUO Yuling. Ransomware Classification Based on Entropy Image Static Analysis Technology [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 91-104.
[4] WANG Luna, DU Hongbo, ZHU Lijun. Stacked Capsule Autoencoders Optimization Algorithm Based on Manifold Regularization [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 76-85.
[5] WANG Li’e, WANG Yihui, LI Xianxian. A Multi-source Data Fusion and Privacy Protection Method of POI Recommendation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 87-101.
[6] WANG Yuhang, ZHANG Canlong, LI Zhixin, WANG Zhiwen. Image Captioning According to User’s Intention and Style [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 91-103.
[7] LI Zhengguang, CHEN Heng, LIN Hongfei. Identification of Adverse Drug Reaction on Social Media Using Bi-directional Language Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 40-48.
[8] WAN Liming, ZHANG Xiaoqian, LIU Zhigui, SONG Lin, ZHOU Ying, LI Li. CT Image Segmentation of UNet Pulmonary Nodules Based on Efficient Channel Attention [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 66-75.
[9] ZHANG Ping, XU Qiaozhi. Segmentation of Lung Nodules Based on Multi-receptive Field and Grouping Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 76-87.
[10] WU Jun, OUYANG Aijia, ZHANG Lin. Phosphorylation Site Prediction Model Based on Multi-head Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 161-171.
[11] DENG Wenxuan, YANG Hang, JIN Ting. A Dimensionality-reduction Method Based on Attention Mechanismon Image Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 32-40.
[12] LI Weiyong, LIU Bin, ZHANG Wei, CHEN Yunfang. An Automatic Summarization Model Based on Deep Learning for Chinese [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 51-63.
[13] WANG Jian, ZHENG Qifan, LI Chao, SHI Jing. Remote Supervision Relationship Extraction Based on Encoder and Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 53-60.
[14] WU Wenya,CHEN Yufeng,XU Jin’an,ZHANG Yujie. High-level Semantic Attention-based Convolutional Neural Networks for Chinese Relation Extraction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 32-41.
[15] YUE Tianchi, ZHANG Shaowu, YANG Liang, LIN Hongfei, YU Kai. Stance Detection Method Based on Two-Stage Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 42-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] DONG Shulong, MA Jiangming, XIN Wenjie. Research Progress and Trend of Landscape Visual Evaluation —Knowledge Atlas Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 1 -13 .
[2] MA Qianran, WEI Duqu. Chaos Prediction of a Motor System with Two Linearly Coupled Reservoir Computers[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 1 -7 .
[3] YAN Minxiu, JIN Qisen. Construction of Multi-dimensional Chaotic Systems and Its Multi-channel Adaptive Control[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 8 -21 .
[4] ZHAO Wei, TIAN Shuai, ZHANG Qiang, WANG Yaoshen, WANG Sibo, SONG Jiang. Fritillaria ussuriensis Maxim Detection Model Based on Improved YOLOv5[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 22 -32 .
[5] GAO Fei, GUO Xiaobin, YUAN Dongfang, CAO Fujun. Improved PINNs Method for Solving the Convective Dominant Diffusion Equation with Boundary Layer[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 33 -50 .
[6] ZHOU Qiao, ZHAI Jiangtao, JIA Dongsheng, SUN Haoxiang. A Web Attack Detection Method Based on Convolutional Gated Recurrent Neural Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 51 -61 .
[7] LIN Wancong, HAN Mingjie, JIN Ting. Multi-level Argument Position Classification Method via Data Augmentation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 62 -69 .
[8] WEN Xueyan, GU Xunkai, LI Zhen, HUANG Yinglai, HUANG Helin. Study of Idiom Reading Comprehension Methods Integrating Interpretation and Bidirectional Interaction[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 70 -79 .
[9] XU Ziyu, WU Keqing. Uniqueness of Positive Solutions for Caputo Fractional Differential Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 92 -104 .
[10] GUO Jie, SUO Hongmin, ZHU Yiying, GUO Jiachao. Existence of Solutions for a Class of Kirchhoff Type Problems with Critical Exponent and Indefinite Potential[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 105 -112 .