Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (4): 47-60.doi: 10.16088/j.issn.1001-6600.2023021503

Previous Articles     Next Articles

Low-Carbon Optimal Scheduling of Integrated Energy System under Electro-Thermal Coupling of 5G Base Station and Concentrated Solar Power Plant

ZHAO Di, WEN Zhong*, WU Qian, YAN Wenwen, QIN Zhiyin, WANG Boyu   

  1. School of Electrical and New Energy, China Three Gorges University,Yichang Hubei 443002,China
  • Received:2023-02-15 Revised:2023-03-13 Online:2023-07-25 Published:2023-09-06

Abstract: Under the dual background of network power strategy and "double carbon" goal, in order to solve the power supply pressure and energy saving and emission reduction problems caused by the increase of density and data volume of 5G mobile network, a low-carbon optimization operation strategy based on the collaboration of 5G base stations (BSs) and integrated energy system (IES) is proposed. Firstly, in order to optimize the energy management of the BSs and strengthen the interaction between the BSs and IES, the BSs sleep mechanism and the demand response model of the BSs energy storage battery are introduced, and their operation effects in different time and space are compared. Secondly, in order to promote the efficient coupling utilization between the BSs and IES electric-thermal energy, a 5G BSs waste heat model is established, which is coupled with the photothermal power station in IES to give full play to the energy supply potential of the two. Finally, in order to measure the low-carbon benefits brought by the addition of the BSs, the reward and punishment ladder carbon trading mechanism is introduced into the system decision-making, and the three-stage optimization scheduling model of the cooperative operation of 5G BSs and IES is constructed. The optimization model is simulated and analyzed under different operation scenarios. The results show that the operating costs of IES and 5G BSs decreased by 20.3% and 22.5% respectively after collaborative scheduling, and the carbon emissions of IES decreased by 24.2%.

Key words: 5G base station, CSP plant, integrated energy system, waste heat utilization, base station energy storage

CLC Number:  TK01; TM73
[1] 周孝信,陈树勇,鲁宗相,等. 能源转型中我国新一代电力系统的技术特征[J].中国电机工程学报,2018,38(7):1893-1904. DOI: 10.13334/j.0258-8013.pcsee.180067.
[2] 杜尔顺,张宁,康重庆,等. 太阳能光热发电并网运行及优化规划研究综述与展望[J].中国电机工程学报,2016,36(21):5765-5775,6019. DOI: 10.13334/j.0258-8013.pcsee.161251.
[3] 刘新元,程雪婷,薄利明,等. 考虑源荷协调的含储热光热电站和风电系统的日前-日内调度策略[J].中国电力,2021,54(8):144-153. DOI: 10.11930/j.issn.1004-9649.202004040.
[4] 杨勇,郭苏,刘群明,等. 风电–CSP联合发电系统优化运行研究[J].中国电机工程学报,2018,38(S1):151-157. DOI: 10.13334/j.0258-8013.pcsee.180956.
[5] DOMÍNGUEZ R, CONEJO A J, CARRIÓN M. Operation of a fully renewable electric energy system with CSP plants[J]. Applied Energy, 2014, 119: 417-430. DOI: 10.1016/j.apenergy.2014.01.014.
[6] SANTOS-ALAMILLOS F J, POZO-VÁZQUEZ D, RUIZ-ARIAS J A, et al. Combining wind farms with concentrating solar plants to provide stable renewable power[J]. Renewable Energy, 2015, 76: 539-550. DOI: 10.1016/j.renene.2014.11.055.
[7] 杨宏基,周明,武昭原,等. 含光热电站的电-热能源系统优化运行机制[J].电网技术,2021,46(1):175-184. DOI: 10.13335/j.1000-3673.pst.2021.0825.
[8] 郑连华,文中,邱智武,等. 计及光热电站和氢储能的综合能源系统低碳优化运行[J/OL].电测与仪表:1-9[2022-10-30].http://kns.cnki.net/kcms/detail/23.1202.TH.20220530.1813.003.html.
[9] 新华网,中国电子信息产业发展研究院.5G融合应用发展白皮书(2020)[EB/OL].(2020-12-04)[2022-10-25].https://baike.baidu.com/item/5G融合应用发展白皮书%282020%29/55269777?fr=aladdin.
[10] 曾博,穆宏伟,董厚琦,等.考虑5G基站低碳赋能的主动配电网优化运行[J].上海交通大学学报,2022,56(3):279-292. DOI: 10.16183/j.cnki.jsjtu.2021.367.
[11] 李达. 5G密集异构网络下的基站休眠技术研究[D].北京:北京邮电大学,2018.
[12] ABROL A, JHA R K. Power optimization in 5G networks: a step towards GrEEn communication[J]. IEEE Access, 2016, 4: 1355-1374. DOI: 10.1109/ACCESS.2016.2549641.
[13] LI Y N R, CHEN M Z, XU J, et al. Power saving techniques for 5G and beyond[J]. IEEE Access, 2020, 8: 108675-108690. DOI: 10.1109/ACCESS.2020.3001180.
[14] 周宸宇,冯成,王毅. 基于移动用户接入控制的5G通信基站需求响应[J].中国电机工程学报,2021,41(16):5452-5461. DOI: 10.13334/j.0258-8013.pcsee.210369.
[15] RENGA D, AL HAJ HASSAN H, MEO M, et al. Energy management and base station on/off switching in green mobile networks for offering ancillary services[J]. IEEE Transactions on Green Communications and Networking, 2018, 2(3): 868-880. DOI: 10.1109/TGCN.2018.2821097.
[16] AL HAJ HASSAN H, RENGA D, MEO M, et al. A novel energy model for renewable energy-enabled cellular networks providing ancillary services to the smart grid[J]. IEEE Transactions on Green Communications and Networking, 2019, 3(2): 381-396. DOI: 10.1109/TGCN.2019.2893203.
[17] NÖRTERSHÄUSER D, LE MASSON S, VOLKOV T, et al. Experimental liquid cooled base station[C]//2016 IEEE International Telecommunications Energy Conference (INTELEC). Piscataway, NJ: IEEE, 2016: 1-7. DOI: 10.1109/INTLEC.2016.7749130.
[18] HUANG P, COPERTARO B, ZHANG X X, et al. A review of data centers as prosumers in district energy systems: Renewable energy integration and waste heat reuse for district heating[J]. Applied Energy, 2020, 258: 114109. DOI: 10.1016/j.apenergy.2019.114109.
[19] Nokia. Nokia and KDDI trial Japan’s first liquid cooling innovation to promote sustainability[EB/OL]. (2021-06-18)[2022-10-24]. https://www.nokia.com/about-us/news/releases/2021/06/18/nokia-and-kddi-trial-japans-first-liquid-cooling-innovation-to-promote-sustainability/.
[20] 孙名轶,赵霞,武桢寓,等. 5G基站与区域综合能源系统的水-能耦合与协同[J/OL].中国电机工程学报:1-14[2022-10-30].http://kns.cnki.net/kcms/detail/11.2107.TM.20220618.1706.009.html.
[21] 雍培,张宁,慈松,等. 5G通信基站参与需求响应:关键技术与前景展望[J].中国电机工程学报,2021,41(16):5540-5551. DOI: 10.13334/j.0258-8013.pcsee.210183.
[22] 朱思嘉. 计及5G基站的电动公交车光储充电站能量管理[D].北京:华北电力大学(北京),2021.
[23] 张勇,范斯达,高海荣,等.融合柔性负荷和碳交易机制的矿山综合能源系统运行优化[J/OL].电力系统及其自动化学报:1-12[2022-10-31].https://doi.org/10.19635/j.cnki.csu-epsa.001100. DOI: 10.19635/j.cnki.csu-epsa.001100.
[24] 陈锦鹏,胡志坚,陈嘉滨,等. 考虑阶梯式碳交易与供需灵活双响应的综合能源系统优化调度[J].高电压技术,2021,47(9):3094-3104. DOI: 10.13336/j.1003-6520.hve.20211094.
[25] OIKONOMOU K, PARVANIA M. Optimal coordination of water distribution energy flexibility with power systems operation[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 1101-1110. DOI: 10.1109/TSG.2018.2824308.
[26] 王晓云,黄宇红,崔春风,等. C-RAN:面向绿色的未来无线接入网演进[J].中国通信,2010,7(3):107-112.
[1] SU Shiwei, HAO Yitong, SONG Yujiao, ZHANG Lei, ZHI Li, HAO Yifan. Optimal Dispatch of Park Integrated Energy System Including Wind Power-Hydrogen Energy-P2G [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 48-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Jiu-cheng, LI Xiao-yan, LI Shuang-qun, ZHANG Ling-jun. Feature Images Retrieval Method of Tolerance Granular-basedMulti-level Texture[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 186 -187 .
[2] BAI Defa, XU Xin, WANG Guochang. Review of Generalized Linear Models and Classification for Functional Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 15 -29 .
[3] ZENG Qingfan, QIN Yongsong, LI Yufang. Empirical Likelihood Inference for a Class of Spatial Panel Data Models[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 30 -42 .
[4] ZHANG Xilong, HAN Meng, CHEN Zhiqiang, WU Hongxin, LI Muhang. Survey of Ensemble Classification Methods for Complex Data Stream[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 1 -21 .
[5] TONG Lingchen, LI Qiang, YUE Pengpeng. Research Progress and Prospects of Karst Soil Organic Carbon Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 22 -34 .
[6] WANG Dangshu, YI Jiaan, DONG Zhen, YANG Yaqiang, DENG Xuan. Research on Bridgeless Boost PFC Converter with Ripple Suppression Unit Based on Single Cycle Control[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 47 -57 .
[7] YU Siting, PENG Jingjing, PENG Zhenyun. Rank Constraint Least Square Symmetric Semidefinite Solutions and Its Optimal Approximation of the Matrix Equation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 136 -144 .
[8] QIN Chengfu, MO Fenmei. Structure ofC3-and C4-Critical Graphs[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 145 -153 .
[9] YIN Yudong, KE Shanzhe, HUANG Jiayan, DENG Mengxiang, LIU Guanyan, CHENG Keguang. One-pot Generation of Allylated Products from Alcohols, Carboxylic Acids and Amines with 1,3-Dibromopropane by Sodium Hydride[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 154 -161 .
[10] DU Libo, LI Jinyu, ZHANG Xiao, LI Yonghong, PAN Weidong. Chemical Constituents and Biological Activity from the Bark of Toona ciliata var. pubescens[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 162 -172 .