Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (4): 33-46.doi: 10.16088/j.issn.1001-6600.2022062803

Previous Articles     Next Articles

Short-Time Traffic Flow Combination Prediction Model Based on Quadratic Decomposition and Fusion of Multiple Features

CHEN Kun, QU Dayi*, WANG Shaojie, WANG Qikun   

  1. College of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao Shandong 266520, China
  • Received:2022-06-28 Revised:2022-09-08 Online:2023-07-25 Published:2023-09-06

Abstract: Considering the random and nonlinear characteristics of traffic flow that result in low prediction accuracy, a combined prediction model based on quadratic decomposition and fusion of multiple features is proposed, where the trend and periodic features in traffic flow are extracted by using the time series decomposition method, the residual components are quadratically decomposed by the optimized variational mode decomposition, the scored amount is reconstructed, the external features of the traffic flow are selected by the correlation coefficient method, and three different models are established to predict the components after fusing the external features. Reinforcement learning is used to optimize the weights of each model, and the final prediction result is obtained by weighted sum. Using the simulation analysis of traffic flow in Changsha urban area, experimental results show that compared with the long short-term memory neural network model. Combined model of convolutional neural networks and gated cyclic units, BP after quadratic decomposition and lightweight gradient lifter after quadratic decomposition, the model established in this paper has a better prediction effect on urban road traffic flow, with an average absolute error of 2.622 and a root mean square error of 3.479. The prediction errors are better than the existing models, which verifies the effectiveness of the proposed model.

Key words: short-time traffic forecasting, time series decomposition, feature selection, Q-Learning, combined model

CLC Number:  U491.14
[1] SUN Z Y, HU Y J, LI W, et al. Prediction model for short-term traffic flow based on a K-means-gated recurrent unit combination
[J]. IET Intelligent Transport Systems, 2022, 16(5): 675-690. DOI: 10.1049/itr2.12165.
[2] WILLIAMS B M, HOEL L A. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results[J]. Journal of Transportation Engineering, 2003, 129(6): 664-672. DOI: 10.1061/(ASCE)0733-947X(2003)129:6(664).
[3] 黑凯先, 曲大义, 周警春, 等. 基于随机森林决策树的行驶车辆换道行为识别[J].青岛理工大学报, 2020, 41(1): 115-120. DOI: 10.3969/j.issn.1673-4602.2020.01.018.
[4] 邹宗民, 郝龙, 李全杰, 等. 基于粒子群优化-支持向量回归的高速公路短时交通流预测[J].科学技术与工程, 2021, 21(12):5118-5123. DOI: 10.3969/j.issn.1671-1815.2021.12.054.
[5] 杨正理, 陈海霞, 王长鹏, 等. 大数据背景下城市短时交通流预测[J].公路交通科技, 2019, 36(2):136-143. DOI: 10.3969/j.issn.1002-0268.2019.02.018.
[6] 许伦辉, 陈凯勋. 基于改进萤火虫算法优化BP神经网络的路网速度分布预测[J].广西师范大学学报(自然科学版), 2019, 37(2):1-8.DOI: 10.16088/j.issn.1001-6600.2019.02.001.
[7] 陈明猜, 於东军, 戚湧. 基于FOA-RBF网络的城市道路短时交通流预测[J].南京邮电大学学报(自然科学版), 2018, 38(2):103-110. DOI: 10.14132/j.cnki.1673-5439.2018.02.017.
[8] 宋瑞蓉, 王斌君, 仝鑫, 等. 基于改进果蝇的混合小波神经网络交通流预测[J].科学技术与工程, 2021, 21(15):6394-6401. DOI: 10.3969/j.issn.1671-1815.2021.15.040.
[9] ZHENG J, HUANG M. Traffic flow forecast through time series analysis based on deep learning[J]. IEEE Access, 2020, 8: 82562-82570. DOI: 10.1109/ACCESS.2020.2990738.
[10] 王博文, 王景升, 朱茵, 等. 基于ARMA-SVR的短时交通流量预测模型研究[J].公路交通科技, 2021, 38(11):126-133. DOI: 10.3969/j.issn.1002-0268.2021.11.015.
[11] MA T, ANTONIOU C, TOLEDO T. Hybrid machine learning algorithm and statistical time series model for network-wide traffic forecast[J]. Transportation Research Part C: Emerging Technologies, 2020, 111: 352-372. DOI: 10.1016/j.trc.2019.12.022.
[12] 王祥雪, 许伦辉. 基于深度学习的短时交通流预测研究[J].交通运输系统工程与信息, 2018, 18(1):81-88. DOI: 10.16097/j.cnki.1009-6744.2018.01.012.
[13] 卢生巧, 黄中祥. 基于深度学习的短时交通流预测模型[J].交通科学与工程, 2020, 36(3):74-80. DOI: 10.16544/j.cnki.cn43-1494/u.2020.03.012.
[14] 邵春福, 薛松, 董春娇, 等. 考虑时空相关性的网络交通流短期预测[J].北京交通大学学报, 2021, 45(4):37-43. DOI: 10.11860/j.issn.1673-0291.20200115.
[15] 许伦辉, 游黄阳. 基于特性和影响因素分析的短时交通流预测[J].广西师范大学学报(自然科学版), 2013, 31(1):1-5. DOI: 10.16088/j.issn.1001-6600.2013.01.001.
[16] 戢晓峰, 戈艺澄. 基于深度学习的节假日高速公路交通流预测方法[J].系统仿真学报, 2020, 32(6):1164-1171. DOI: 10.16182/j.issn1004731x.joss.19-0565.
[17] 李桃迎, 王婷, 张羽琪. 考虑多特征的高速公路交通流预测模型[J].交通运输系统工程与信息, 2021, 21(3):101-111. DOI: 10.16097/j.cnki.1009-6744.2021.03.013.
[18] 殷礼胜, 孙双晨, 魏帅康, 等. 基于自适应VMD-Attention-BiLSTM的交通流组合预测模型[J].电子测量与仪器学报, 2021, 35(7):130-139. DOI: 10.13382/j.jemi.B2003575.
[19] ZHAO J D, YU Z X, YANG X, et al. Short term traffic flow prediction of expressway service area based on STL-OMS[J]. Physica A: Statistical Mechanics and Its Applications, 2022, 595: 126937-126952. DOI: 10.1016/j.physa.2022.126937.
[20] ZHANG Y R, ZHANG Y L, HAGHANI A. A hybrid short-term traffic flow forecasting method based on spectral analysis and statistical volatility model[J]. Transportation Research Part C: Emerging Technologies, 2014, 43: 65-78. DOI: 10.1016/j.trc.2013.11.011.
[21] 吴玲玲, 尹莉莉, 任其亮. 一种EMD和DE-BPNN组合优化的短时交通流预测方法[J].重庆理工大学学报(自然科学), 2021, 35(12):155-163. DOI: 10.3969/j.issn.1674-8425(z).2021.12.020.
[22] 彭延峰, 彭志华, 刘燕飞. 基于ASNBD-CMFE特征信息提取的短时交通流预测[J].北京交通大学学报, 2021, 45(2):28-35. DOI: 10.11860/j.issn.1673-0291.20200082.
[23] LEMPEL A, ZIV J. On the complexity of finite sequences[J]. IEEE Transactions on Information Theory, 1976, 22(1): 75-81. DOI: 10.1109/TIT.1976.1055501.
[24] PASCANU R, MIKOLOV T, BENGIO Y. On the difficulty of training recurrent neural networks[C]// Proceedings of the 30th International Conference on Machine Learning. New York: PMLR, 2013, 28(3): 1310-1318.
[25] 王扬, 陈智斌, 吴兆蕊, 等. 强化学习求解组合最优化问题的研究综述[J].计算机科学与探索, 2022, 16(2):261-279. DOI: 10.3778/j.issn.1673-9418.2107040.
[1] ZHENG Wei,WEN Guoqiu,HE Wei,HU Rongyao,ZHAO Shuzhi. Low-rank Unsupervised Feature Selection Based on Self-representation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 61-69.
[2] CHEN Zhen-ya, CHEN Guang-hui, XU Jian-min. A Selection Method of Ontology-based Text Feature [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 143-146.
[3] MA Nan-nan, LIANG Ji-ye, WANG Feng, QIAN Yu-hua. A Feature Selection Algorithm of Ordered Decision Tables [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(3): 89-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Jiu-cheng, LI Xiao-yan, LI Shuang-qun, ZHANG Ling-jun. Feature Images Retrieval Method of Tolerance Granular-basedMulti-level Texture[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 186 -187 .
[2] BAI Defa, XU Xin, WANG Guochang. Review of Generalized Linear Models and Classification for Functional Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 15 -29 .
[3] ZENG Qingfan, QIN Yongsong, LI Yufang. Empirical Likelihood Inference for a Class of Spatial Panel Data Models[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 30 -42 .
[4] ZHANG Xilong, HAN Meng, CHEN Zhiqiang, WU Hongxin, LI Muhang. Survey of Ensemble Classification Methods for Complex Data Stream[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 1 -21 .
[5] TONG Lingchen, LI Qiang, YUE Pengpeng. Research Progress and Prospects of Karst Soil Organic Carbon Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 22 -34 .
[6] WANG Dangshu, YI Jiaan, DONG Zhen, YANG Yaqiang, DENG Xuan. Research on Bridgeless Boost PFC Converter with Ripple Suppression Unit Based on Single Cycle Control[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 47 -57 .
[7] YU Siting, PENG Jingjing, PENG Zhenyun. Rank Constraint Least Square Symmetric Semidefinite Solutions and Its Optimal Approximation of the Matrix Equation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 136 -144 .
[8] QIN Chengfu, MO Fenmei. Structure ofC3-and C4-Critical Graphs[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 145 -153 .
[9] YIN Yudong, KE Shanzhe, HUANG Jiayan, DENG Mengxiang, LIU Guanyan, CHENG Keguang. One-pot Generation of Allylated Products from Alcohols, Carboxylic Acids and Amines with 1,3-Dibromopropane by Sodium Hydride[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 154 -161 .
[10] DU Libo, LI Jinyu, ZHANG Xiao, LI Yonghong, PAN Weidong. Chemical Constituents and Biological Activity from the Bark of Toona ciliata var. pubescens[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 162 -172 .