Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (3): 130-143.doi: 10.16088/j.issn.1001-6600.2022050602
Previous Articles Next Articles
HUANG Yingjie, ZHOU Fengying*, XU Xiaoyong, HE Hongmei
[1] SOLTANPOUR A, ARABAMERI M, BALEANU D, et al. Numerical solution of variable fractional order advection-dispersion equation using Bernoulli wavelet method and new operational matrix of fractional order derivative[J]. Mathematical Methods in the Applied Sciences, 2020, 43(7): 3936-3953. DOI: 10.1002/mma.6164. [2] OSMAN M S, MACHADO J A T, BALEANU D, et al. On distinctive solitons type solutions for some important nonlinear Schrödinger equations[J]. Optical and Quantum Electronics, 2021, 53(2): 70. DOI: 10.1007/s11082-020-02711-z. [3] KHEIRI H, JAFARI M. Stability analysis of a fractional order model for the HIV/AIDS epidemic in a patchy environment[J]. Journal of Computational and Applied Mathematics, 2019, 346: 323-339. DOI: 10.1016/j.cam.2018.06.55. [4] MOHAPATRA S N, MISHRA S R, JENA P. Time-fractional differential equations with variable order using RDTM and ADM: application to infectious-disease model[J]. International Journal of Applied and Computational Mathematics, 2022, 138(3): 138. DOI: 10.1007/s40819-022-01332-2. [5] MOLAVI-ARABSHAHI M, SAEIDI Z. Application of compact finite difference method for solving some type of fractional derivative equations[J]. International Journal of Circuits, Systems and Signal Processing, 2021, 15(143): 1324-1335. DOI: 10.46300/9106.2021.15.143. [6] EBAID A. A new analytical and numerical treatment for singular two-point boundary value problems via the Adomian decomposition method[J]. Journal of Computational and Applied Mathematics, 2011, 235(8): 1914-1924. DOI: 10.1016/j.cam.2010.09.007. [7] KUMAR S, GUPTA V. An application of variational iteration method for solving fuzzy time-fractional diffusion equations[J]. Neural Computing and Applications, 2021, 33(24): 17659-17668. DOI: 10.1007/s00521-021-06354-3. [8] MA X H, HUANG C M. Spectral collocation method for linear fractional integro-differential equations[J]. Applied Mathematical Modelling, 2014, 38(4): 1434-1448. DOI: 10.1016/j.apm.2013.08.013. [9] NEDAIASL K, DEHBOZORGI R. Galerkin finite element method for nonlinear fractional differential equations[J]. Numerical Algorithms, 2021, 88(1): 113-141. DOI: 10.1007/s11075-020-01032-2. [10] SAYEVAND K, FARDI M, MORADI E, et al. Convergence analysis of homotopy perturbation method for Volterra integro-differential equations of fractional order[J]. Alexandria Engineering Journal, 2013, 52(4): 807-812. DOI: 10.1016/j.aej.2013.08.008. [11] PARAND K, MEHDI D, REZAEI A R, et al. An approximation algorithm for the solution of the nonlinear Lane-Emden type equations arising in astrophysics using Hermite functions collocation method[J]. Computer Physics Communications, 2010, 181(6): 1096-1108. DOI: 10.1016/j.cpc.2010.02.018. [12] BEHERA S, SAHA RAY S. Euler wavelets method for solving fractional-order linear Volterra-Fredholm integro-differential equations with weakly singular kernels[J]. Computational and Applied Mathematics, 2021, 40(6): 192. [13] 徐志刚. 三类微分方程的Euler小波数值解法[D].南昌:东华理工大学,2021. [14] 李静,朱莉.分数阶变系数微分方程的Euler小波解法[J].宁波工程学院学报,2019, 31(1): 1-6. DOI: 10.3969/j.issn.1008-7109.2019.01.001. [15] ARULDOSS R, BALAJI K. Numerical inversion of Laplace transform via wavelet operational matrix and its applications to fractional differential equations[J]. International Journal of Applied and Computational Mathematics, 2022, 8(1): 16. DOI: 10.1007/s40819-021-01222-z. [16] 朱帅, 朱世昕. Legendre小波函数求解非线性Volterra积分微分方程组的数值解[J].数学的实践与认识,2019, 49(24): 202-207. DOI: CNKI:SUN:SSJS.0.2019-24-025. [17] REHMAN M, BALEANU D, ALZABUT J, et al. Green-Haar wavelets method for generalized fractional differential equations[J]. Advances in Difference Equations, 2020(1): 515. DOI: 10.1186/s13662-020-02974-6. [18] 王魁良. Haar小波数值方法及其在力学问题中的应用[D]. 兰州:兰州大学,2021. [19] VO T N, RAZZAGHI M, TOAN P T. Fractional-order generalized Taylor wavelet method for systems of nonlinear fractional differential equations with application to human respiratory syncytial virus infection[J]. Soft Computing, 2022, 26(1): 165-173. DOI: 10.1007/s00500-021-06436-3. [20] TOAN P T, VO T N, RAZZAGHI M. Taylor wavelet method for fractional delay differential equations[J]. Engineering with Computers, 2021, 37(1): 231-240. DOI: 10.1007/s00366-019-00818-w. [21] DHAWAN S, TENREIR MACHADO J A T, BRZEZIŃSKI D W, et al. A Chebyshev wavelet collocation method for some types of differential problems[J]. Symmetry, 2021, 13(4): 536. DOI: 10.3390/sym13040536. [22] 谢宇.第五类Chebyshev小波的构造及其在分数阶微分方程求解中的应用[D].南昌:东华理工大学, 2020. [23] ABD-ELHAMEED W M, ALKHAMISI S O. New results of the fifth-kind orthogonal Chebyshev polynomials[J]. Symmetry, 2021, 13(12): 2407. DOI: 10.3390/sym13122407. [24] ABD-ELHAMEED W M, YOUSSRI Y H. Fifth-kind orthonormal Chebyshev polynomial solutions for fractional differential equations[J]. Computational and Applied Mathematics, 2018, 37(3): 2897-2921. DOI: 10.1007/s40314-017-0488-z. [25] SADRI K, AMINIKHAH H. Chebyshev polynomials of sixth kind for solving nonlinear fractional PDEs with proportional delay and its convergence analysis[J]. Journal of Function Spaces, 2022, 2022: 9512048. DOI: 10.1155/2022/9512048. [26] ÇELIK, KARATAŞ A S. Chebyshev wavelets collocation method for extended fisher Kolmogorov equations one and two space dimension[J].International Journal of Applied and Computational Mathematics, 2021, 7(5): 205. DOI: 10.1007/s40819-021-01093-4. [27] GHANBARI G, RAZZAGHI M. Fractional-order Chebyshev wavelet method for variable-order fractional optimal control problems[J]. Mathematical Methods in the Applied Sciences, 2022, 45(2): 827-842. DOI: 10.1002/mma.7816. [28] NIGAM H K, MOHAPATRA R N, MURARI K. Wavelet approximation of a function using Chebyshev wavelets[J]. Journal of Inequalities and Applications, 2020(1): 187. DOI: 10.1186/s13660-020-02453-2. [29] 许小勇, 周凤英. 第三类和第四类Chebyshev小波积分算子矩阵及其在数值积分中的应用[J]. 应用数学, 2016, 29(1): 91-103. DOI: 10.13642/j.cnki.42-1184/o1.2016.01.013. [30] JAFARI H, NEMATI S, GANJI R M. Operational matrices based on the shifted fifth-kind Chebyshev polynomials for solving nonlinear variable order integro-differential equations[J]. Advances in Difference Equations, 2021(1): 435. DOI: 10.1186/s13662-021-03588-2. [31] ZHOU F Y, XU X Y. The third kind Chebyshev wavelets collocation method for solving the time fractional convection diffusion equations with variable coefficients[J]. Applied Mathematics and Computation, 2016, 280: 11-29.DOI: 10.1016/j.amc.2016.01.029. [32] MASJED-JAMEI M. Some new classes of orthogonal polynomials and special functions: a symmetric generalization of Sturm-Liouville problems and its consequences[D]. Kassel: University of Kassel, 2006. [33] SAADATMANDI A, GHASEMI-NASRABADY A, EFTEKHARI A. Numerical study of singular fractional Lane-Emden type equations arising in astrophysics[J].Journal of Astrophysics and Astronomy, 2019, 40(3):27. DOI: 10.1007/s12036-019-9587-0. [34] GUPTA A K, SAHA RAY S. Numerical treatment for the solution of fractional fifth-order Sawada-Kotera equation using second kind Chebyshev wavelet method[J]. Applied Mathematical Modelling, 2015, 39(17): 5121-5130. DOI: 10.1016/j.apm.2015.04.003. [35] ZHOU F Y, XU X Y. Numerical solutions for the linear and nonlinear singular boundary value problems using Laguerre wavelets[J]. Advances in Difference Equations, 2016(1): 17. DOI: 10.1186/s13662-016-0754-1. [36] NASAB A K, ATABAKAN Z P. ISMAIL A I, et al. A numerical method for solving singular fractional Lane-Emden type equations[J]. Journal of King Saud University-Science, 2018, 30(1): 120-130. DOI: 10.1016/j.jksus.2016.10.001. [37] 徐志刚,周凤英. Lane-Emden型微分方程数值解的Euler小波方法[J].海南大学学报(自然科学版),2020, 38(3): 207-215. DOI: 10.15886/j.cnki.hdxbzkb.2020.0029. [38] SINGH R, GARG H, GULERIA V. Haar wavelet collocation method for Lane-Emden equations with Dirichlet, Neumann and Neumann-Robin boundary conditions[J]. Journal of Computational and Applied Mathematics, 2019, 346: 150-161. DOI: 10.1016/j.cam.2018.07.004. |
[1] | ZHAO Tingting, YANG Fenglian. B-Spline Method for the Cauchy Problem of the Laplace Equation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 118-129. |
[2] | JIANG Chao-long, LUO Ting, SUN Jian-qiang. Multi-symplectic Method of the Fifth Order Saturated Nonlinear Schrödinger Equation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(4): 71-77. |
[3] | ZHANG Hao-qi, ZHANG Hao-min. Exponential Stability of 1.5 Order Stochastic Taylor Method for Stochastic Differential Equations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 35-41. |
[4] | LAN Haifeng, XIAO Feiyan, ZHANG Gengen, ZHU Rui. Error Analysis of Compact Implicit-Explicit BDF Method forNonlinear Partial Integral Differential Equations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 82-91. |
|