Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (3): 130-143.doi: 10.16088/j.issn.1001-6600.2022050602

Previous Articles     Next Articles

The Sixth Kind of Chebyshev Wavelet Collocation Method for Numerical Solutions of Fractional Differential Equations

HUANG Yingjie, ZHOU Fengying*, XU Xiaoyong, HE Hongmei   

  1. School of Science, East China University of Technology, Nanchang Jiangxi 330013, China
  • Received:2022-05-06 Revised:2022-07-20 Online:2023-05-25 Published:2023-06-01

Abstract: Based on the sixth kind of Chebyshev wavelet collocation method, a numerical method for solving fractional differential equations is proposed. By using the shifted sixth kind of Chebyshev polynomials and under the definition of Riemann-Liouville fractional order, the exact expressions of the fractional order integral formulas of the sixth kind of Chebyshev wavelet functions are obtained. Using the integral formulas together with the effective collocation method, the problem of solving fractional differential equations is transformed into algebraic equations. The uniform convergence analysis of the expansion of the sixth kind of Chebyshev wavelet functions and error estimation in the sense of L2 norm are given. Numerical examples show the applicability and effectiveness of the algorithm.

Key words: the sixth kind of Chebyshev wavelet, fractional order differential equation, Riemann-Liouville fractional integration, Caputo fractional differential, collocation method

CLC Number:  O241.8
[1] SOLTANPOUR A, ARABAMERI M, BALEANU D, et al. Numerical solution of variable fractional order advection-dispersion equation using Bernoulli wavelet method and new operational matrix of fractional order derivative[J]. Mathematical Methods in the Applied Sciences, 2020, 43(7): 3936-3953. DOI: 10.1002/mma.6164.
[2] OSMAN M S, MACHADO J A T, BALEANU D, et al. On distinctive solitons type solutions for some important nonlinear Schrödinger equations[J]. Optical and Quantum Electronics, 2021, 53(2): 70. DOI: 10.1007/s11082-020-02711-z.
[3] KHEIRI H, JAFARI M. Stability analysis of a fractional order model for the HIV/AIDS epidemic in a patchy environment[J]. Journal of Computational and Applied Mathematics, 2019, 346: 323-339. DOI: 10.1016/j.cam.2018.06.55.
[4] MOHAPATRA S N, MISHRA S R, JENA P. Time-fractional differential equations with variable order using RDTM and ADM: application to infectious-disease model[J]. International Journal of Applied and Computational Mathematics, 2022, 138(3): 138. DOI: 10.1007/s40819-022-01332-2.
[5] MOLAVI-ARABSHAHI M, SAEIDI Z. Application of compact finite difference method for solving some type of fractional derivative equations[J]. International Journal of Circuits, Systems and Signal Processing, 2021, 15(143): 1324-1335. DOI: 10.46300/9106.2021.15.143.
[6] EBAID A. A new analytical and numerical treatment for singular two-point boundary value problems via the Adomian decomposition method[J]. Journal of Computational and Applied Mathematics, 2011, 235(8): 1914-1924. DOI: 10.1016/j.cam.2010.09.007.
[7] KUMAR S, GUPTA V. An application of variational iteration method for solving fuzzy time-fractional diffusion equations[J]. Neural Computing and Applications, 2021, 33(24): 17659-17668. DOI: 10.1007/s00521-021-06354-3.
[8] MA X H, HUANG C M. Spectral collocation method for linear fractional integro-differential equations[J]. Applied Mathematical Modelling, 2014, 38(4): 1434-1448. DOI: 10.1016/j.apm.2013.08.013.
[9] NEDAIASL K, DEHBOZORGI R. Galerkin finite element method for nonlinear fractional differential equations[J]. Numerical Algorithms, 2021, 88(1): 113-141. DOI: 10.1007/s11075-020-01032-2.
[10] SAYEVAND K, FARDI M, MORADI E, et al. Convergence analysis of homotopy perturbation method for Volterra integro-differential equations of fractional order[J]. Alexandria Engineering Journal, 2013, 52(4): 807-812. DOI: 10.1016/j.aej.2013.08.008.
[11] PARAND K, MEHDI D, REZAEI A R, et al. An approximation algorithm for the solution of the nonlinear Lane-Emden type equations arising in astrophysics using Hermite functions collocation method[J]. Computer Physics Communications, 2010, 181(6): 1096-1108. DOI: 10.1016/j.cpc.2010.02.018.
[12] BEHERA S, SAHA RAY S. Euler wavelets method for solving fractional-order linear Volterra-Fredholm integro-differential equations with weakly singular kernels[J]. Computational and Applied Mathematics, 2021, 40(6): 192.
[13] 徐志刚. 三类微分方程的Euler小波数值解法[D].南昌:东华理工大学,2021.
[14] 李静,朱莉.分数阶变系数微分方程的Euler小波解法[J].宁波工程学院学报,2019, 31(1): 1-6. DOI: 10.3969/j.issn.1008-7109.2019.01.001.
[15] ARULDOSS R, BALAJI K. Numerical inversion of Laplace transform via wavelet operational matrix and its applications to fractional differential equations[J]. International Journal of Applied and Computational Mathematics, 2022, 8(1): 16. DOI: 10.1007/s40819-021-01222-z.
[16] 朱帅, 朱世昕. Legendre小波函数求解非线性Volterra积分微分方程组的数值解[J].数学的实践与认识,2019, 49(24): 202-207. DOI: CNKI:SUN:SSJS.0.2019-24-025.
[17] REHMAN M, BALEANU D, ALZABUT J, et al. Green-Haar wavelets method for generalized fractional differential equations[J]. Advances in Difference Equations, 2020(1): 515. DOI: 10.1186/s13662-020-02974-6.
[18] 王魁良. Haar小波数值方法及其在力学问题中的应用[D]. 兰州:兰州大学,2021.
[19] VO T N, RAZZAGHI M, TOAN P T. Fractional-order generalized Taylor wavelet method for systems of nonlinear fractional differential equations with application to human respiratory syncytial virus infection[J]. Soft Computing, 2022, 26(1): 165-173. DOI: 10.1007/s00500-021-06436-3.
[20] TOAN P T, VO T N, RAZZAGHI M. Taylor wavelet method for fractional delay differential equations[J]. Engineering with Computers, 2021, 37(1): 231-240. DOI: 10.1007/s00366-019-00818-w.
[21] DHAWAN S, TENREIR MACHADO J A T, BRZEZIŃSKI D W, et al. A Chebyshev wavelet collocation method for some types of differential problems[J]. Symmetry, 2021, 13(4): 536. DOI: 10.3390/sym13040536.
[22] 谢宇.第五类Chebyshev小波的构造及其在分数阶微分方程求解中的应用[D].南昌:东华理工大学, 2020.
[23] ABD-ELHAMEED W M, ALKHAMISI S O. New results of the fifth-kind orthogonal Chebyshev polynomials[J]. Symmetry, 2021, 13(12): 2407. DOI: 10.3390/sym13122407.
[24] ABD-ELHAMEED W M, YOUSSRI Y H. Fifth-kind orthonormal Chebyshev polynomial solutions for fractional differential equations[J]. Computational and Applied Mathematics, 2018, 37(3): 2897-2921. DOI: 10.1007/s40314-017-0488-z.
[25] SADRI K, AMINIKHAH H. Chebyshev polynomials of sixth kind for solving nonlinear fractional PDEs with proportional delay and its convergence analysis[J]. Journal of Function Spaces, 2022, 2022: 9512048. DOI: 10.1155/2022/9512048.
[26] ÇELIK, KARATAŞ A S. Chebyshev wavelets collocation method for extended fisher Kolmogorov equations one and two space dimension[J].International Journal of Applied and Computational Mathematics, 2021, 7(5): 205. DOI: 10.1007/s40819-021-01093-4.
[27] GHANBARI G, RAZZAGHI M. Fractional-order Chebyshev wavelet method for variable-order fractional optimal control problems[J]. Mathematical Methods in the Applied Sciences, 2022, 45(2): 827-842. DOI: 10.1002/mma.7816.
[28] NIGAM H K, MOHAPATRA R N, MURARI K. Wavelet approximation of a function using Chebyshev wavelets[J]. Journal of Inequalities and Applications, 2020(1): 187. DOI: 10.1186/s13660-020-02453-2.
[29] 许小勇, 周凤英. 第三类和第四类Chebyshev小波积分算子矩阵及其在数值积分中的应用[J]. 应用数学, 2016, 29(1): 91-103. DOI: 10.13642/j.cnki.42-1184/o1.2016.01.013.
[30] JAFARI H, NEMATI S, GANJI R M. Operational matrices based on the shifted fifth-kind Chebyshev polynomials for solving nonlinear variable order integro-differential equations[J]. Advances in Difference Equations, 2021(1): 435. DOI: 10.1186/s13662-021-03588-2.
[31] ZHOU F Y, XU X Y. The third kind Chebyshev wavelets collocation method for solving the time fractional convection diffusion equations with variable coefficients[J]. Applied Mathematics and Computation, 2016, 280: 11-29.DOI: 10.1016/j.amc.2016.01.029.
[32] MASJED-JAMEI M. Some new classes of orthogonal polynomials and special functions: a symmetric generalization of Sturm-Liouville problems and its consequences[D]. Kassel: University of Kassel, 2006.
[33] SAADATMANDI A, GHASEMI-NASRABADY A, EFTEKHARI A. Numerical study of singular fractional Lane-Emden type equations arising in astrophysics[J].Journal of Astrophysics and Astronomy, 2019, 40(3):27. DOI: 10.1007/s12036-019-9587-0.
[34] GUPTA A K, SAHA RAY S. Numerical treatment for the solution of fractional fifth-order Sawada-Kotera equation using second kind Chebyshev wavelet method[J]. Applied Mathematical Modelling, 2015, 39(17): 5121-5130. DOI: 10.1016/j.apm.2015.04.003.
[35] ZHOU F Y, XU X Y. Numerical solutions for the linear and nonlinear singular boundary value problems using Laguerre wavelets[J]. Advances in Difference Equations, 2016(1): 17. DOI: 10.1186/s13662-016-0754-1.
[36] NASAB A K, ATABAKAN Z P. ISMAIL A I, et al. A numerical method for solving singular fractional Lane-Emden type equations[J]. Journal of King Saud University-Science, 2018, 30(1): 120-130. DOI: 10.1016/j.jksus.2016.10.001.
[37] 徐志刚,周凤英. Lane-Emden型微分方程数值解的Euler小波方法[J].海南大学学报(自然科学版),2020, 38(3): 207-215. DOI: 10.15886/j.cnki.hdxbzkb.2020.0029.
[38] SINGH R, GARG H, GULERIA V. Haar wavelet collocation method for Lane-Emden equations with Dirichlet, Neumann and Neumann-Robin boundary conditions[J]. Journal of Computational and Applied Mathematics, 2019, 346: 150-161. DOI: 10.1016/j.cam.2018.07.004.
[1] ZHAO Tingting, YANG Fenglian. B-Spline Method for the Cauchy Problem of the Laplace Equation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 118-129.
[2] JIANG Chao-long, LUO Ting, SUN Jian-qiang. Multi-symplectic Method of the Fifth Order Saturated Nonlinear Schrödinger Equation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(4): 71-77.
[3] ZHANG Hao-qi, ZHANG Hao-min. Exponential Stability of 1.5 Order Stochastic Taylor Method for Stochastic Differential Equations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 35-41.
[4] LAN Haifeng, XIAO Feiyan, ZHANG Gengen, ZHU Rui. Error Analysis of Compact Implicit-Explicit BDF Method forNonlinear Partial Integral Differential Equations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 82-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] DU Xuesong,LIN Yong,LIANG Guokun,HUANG Yin,BIN Shiyu, CHEN Zhong,QIN Junqi,ZHAO Yi. Comparison of Low Temperature Resistant Performance between Two Tilapia[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 174 -179 .
[2] LIU Jing, BIAN Xun. Characteristics of the Orthoptera Mitogenome and Its Application[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 17 -28 .
[3] CHENG Rui, HE Mingxian, ZHONG Chunying, LUO Shuyi, WU Zhengjun. Comparison of Swimming Ability between Wild and Captive Breeding Shinisaurus crocodilurus[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 79 -86 .
[4] XU Guoliang. Seven New Records of Ferns from Guangdong, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 114 -118 .
[5] ZHANG Xiaolei, ZHAO Wei, WANG Fanggui. On φ-flat Cotorsion Theory[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 119 -124 .
[6] LI Benchao, LIANG Yan, QIN Xiaoya, MO Tuxiang, XU Zhaolong, LI Jun, YANG Ruiyun. Secondary Metabolites of Endophytic Fungus GDG-178 from Sophora tonkinensis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 139 -143 .
[7] ZHAN Xin, CHEN Lijing, LIAO Guangfeng, LI Bing, LU Rumei. Research Progress of New C21-Steroids in Medicinal Plant of Asclepiadaceae (Ⅰ)[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 1 -29 .
[8] LU Kaifeng, YANG Yilong, LI Zhi. A Web Service Classification Method Using BERT and DPCNN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 87 -98 .
[9] KONG Lingtao, SONG Xiangjun, WANG Xiaomin. Sample Size Determination for the Additive Hazards Model with Current Status Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 187 -194 .
[10] ZHANG Wenlong, NAN Xinyuan. Road Vehicle Tracking Algorithm Based on Improved YOLOv5[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 49 -57 .