Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (3): 118-129.doi: 10.16088/j.issn.1001-6600.2022041401

Previous Articles     Next Articles

B-Spline Method for the Cauchy Problem of the Laplace Equation

ZHAO Tingting, YANG Fenglian*   

  1. College of Science, Hohai University, Nanjing Jiangsu 210000, China
  • Received:2022-04-14 Revised:2022-05-25 Online:2023-05-25 Published:2023-06-01

Abstract: The Cauchy problem is extremely ill-posed and requires effective numerical algorithms to solve it. A B-spline method is proposed to solve the problem in this paper. Firstly, the approximate solution of the problem is given in the shift invariant space generated by cubic B-spline functions. Then, based on the properties of equation and B-spline basis function whose derivative can be expressed by low-order spline basis function, the variational form of the problem is obtained. Furthermore, Tikhonov regularization method is proposed to obtain stable numerical solutions in order to reduce the influence of noise. Finally, numerical experiments on rectangular region and the region with non-smooth boundary show that the proposed method is effective.

Key words: Cauchy problem, Laplace equation, shift invariant spaces, cubic B-spline function, regularization

CLC Number:  O241.82
[1] 程晋, 刘继军, 张波. 偏微分方程反问题: 模型、算法和应用[J]. 中国科学: 数学, 2019, 49(4): 643-666. DOI: 10.1360/N012018-00076.
[2] HADAMARD J. Lectures on Cauchy's problem in linear partial differential equations[M]. Oxford: Oxford University Press, 1923.
[3] BUKHGEIM A L, CHENG J, YAMAMOTO M. Conditional stability in an inverse problem of determining a non-smooth boundary[J]. Journal of Mathematical Analysis and Applications, 2000, 242 (1): 57-74. DOI: 10.1006/jmaa.1999.6654.
[4] ALESSANDRINI G, RONDI L, ROSSET E, et al. The stability for the Cauchy problem for elliptic equations[J]. Inverse Problems, 2009, 25(12): 123004. DOI: 10.1088/0266-5611/25/12/123004.
[5] 胡文. 变系数偏微分方程柯西反问题的无网格广义有限差分方法[D]. 青岛: 青岛大学, 2020.
[6] 魏昕婧, 潘月君, 张耀明. Laplace方程Cauchy问题的正则化间接边界元法[J]. 山东理工大学学报(自然科学版), 2016, 30(3): 57-60. DOI: 10.13367/j.cnki.sdgc.2016.03.014.
[7] KAZEMZADEH-PARSI M J, DANESHMAND F. Solution of geometric inverse heat conduction problems by smoothed fixed grid finite element method[J]. Finite Elements in Analysis & Design, 2009, 45(10): 599-611. DOI: 10.1016/j.finel.2009.03.008.
[8] WANG F J, FAN C M, HUA Q S, et al. Localized MFS for the inverse Cauchy problems of two-dimensional Laplace and biharmonic equations[J]. Applied Mathematics and Computation, 2020, 364(1): 124658-124671. DOI: 10.1016/j.amc.2019.124658.
[9] LIU C S, CHANG C W, CHIANG C Y. A regularized integral equation method for the inverse geometry heat conduction problem[J]. International Journal of Heat & Mass Transfer, 2008, 51(21/22): 5380-5388. DOI: 10.1016/j.ijheatmasstransfer.2008.02.043.
[10] SUN Y, ZHANG D Y, MA F M. A potential function method for the Cauchy problem of elliptic operators[J]. Journal of Mathematical Analysis and Applications, 2012, 395(1): 164-174. DOI: 10.1016/j.jmaa.2012.05.038.
[11] YANG F L, LING L, WEI T. An adaptive greedy technique for inverse boundary determination problem[J]. Journal of Computational Physics, 2010, 229(22): 8484-8496. DOI: 10.1016/j.jcp.2010.07.031.
[12] WU D F, XU T, RH S, et al. Meshless method based on wavelet basis function[J]. Journal of Jilin University, 2010, 40(3): 740-744. DOI: 10.3788/gzxb20103908.1438.
[13] ZHANG X M, ZENG W X. The regularization B-spline wavelet method for the inverse boundary problem of the Laplace equation from noisy data in an irregular domain[J]. Engineering Analysis with Boundary Elements, 2021, 125(4): 1-11. DOI: 10.1016/j.enganabound.2021.01.002.
[14] JOHNSON M J, SHEN Z W, XU Y H. Scattered data reconstruction by regularization in B-spline and associated wavelet spaces[J]. Journal of Approximation Theory, 2009, 159(2): 197-223. DOI: 10.1016/j.jat.2009.02.005.
[15] YANG J B, STAHL D, SHEN Z W. An analysis of wavelet frame based scattered data reconstruction[J]. Applied and Computational Harmonic Analysis, 2017, 42(3): 480-507. DOI: 10.1016/j.acha.2015.09.008.
[16] 范筱, 蒋英春. 混合范数条件下平移不变信号的非均匀平均采样[J]. 数学学报(中文版), 2018, 61(2): 289-300. DOI: 10.3969/j.issn.0583-1431.2018.02.008.
[17] ALDROUBI A, GRÖCHENIG K. Nonuniform sampling and reconstruction in shift-invariant spaces[J]. Siam Review, 2001, 43(4): 585-620. DOI: 10.1137/s0036144501386986.
[18] 覃潇潇,余波.利用四阶样条快速计算信号的希尔伯特变换[J]. 广西师范大学学报(自然科学版),2022, 40(4):126-135. DOI: 10.16088/j.issn.1001-6600.2021082704.
[19] 王仁宏, 李崇君, 朱春钢. 计算几何教程[M]. 北京:科学出版社, 2008:158-174.
[20] HANSEN P C. Regularization tools: A Matlab package for analysis and solution of discrete Ill-posed problems[J]. Numerical Algorithms, 1994,6(1): 1-35.
[1] WANG Luna, DU Hongbo, ZHU Lijun. Stacked Capsule Autoencoders Optimization Algorithm Based on Manifold Regularization [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 76-85.
[2] ZHANG Yinghui, YE Qin. Compressible Non-conservative Two-phase Flow Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 127-137.
[3] DU Jinfeng, WANG Hairong, LIANG Huan, WANG Dong. Progress of Cross-modal Retrieval Methods Based on Representation Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 1-12.
[4] JIANG Qunqun, WANG Linfeng. Liouville Theorems for a Nonlinear p-Laplace Equation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 116-124.
[5] WANG Sheng-jun, DOU Jing-bo. Sharp Hardy Type Inequalities for a Class of Degenerate Subelliptic Operator and Applications [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(1): 18-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] DU Xuesong,LIN Yong,LIANG Guokun,HUANG Yin,BIN Shiyu, CHEN Zhong,QIN Junqi,ZHAO Yi. Comparison of Low Temperature Resistant Performance between Two Tilapia[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 174 -179 .
[2] CHENG Rui, HE Mingxian, ZHONG Chunying, LUO Shuyi, WU Zhengjun. Comparison of Swimming Ability between Wild and Captive Breeding Shinisaurus crocodilurus[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 79 -86 .
[3] CHEN Danni, CHEN Zhilin, ZHOU Shanyi. A Checklist of Family Formicidae of China: Myrmecinae (Addendum) (Insect: Hymenoptera)[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 87 -97 .
[4] HU Jinming, WEI Duqu. Hybrid Projective Synchronization of Fractional-order PMSM with Different Orders[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 1 -8 .
[5] LUO Shuyi, LI Yongtai, WU Zhengjun, CHENG Rui, CHEN Yaohuan, HE Jiasong. Influencing Factors of Perch Height of Shinisaurus crocodilurus in Daguishan Mountain, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 182 -189 .
[6] HOU Qianqian, FANG Zhigang, QIN Yu, ZHU Yiwen. Study on the Polarization of Fe4P Clusters[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 140 -146 .
[7] CAO Xinguang, YUE Weipeng, DENG Jie. Soil Organic Carbon Distribution Characteristics along an Altitudinal Gradient in the Northern Subtropical Region: A Case Study in Guifeng Mountains of Eastern Hubei, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 174 -182 .
[8] GUO Jiabao, BI Shuoben, QIU Xiangkai, ZHANG Li. Spatial and Temporal Analysis of Droughts and Floods in the Three Provinces of Northeast China in Qing Dynasty[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 183 -196 .
[9] ZHANG Ping, XU Qiaozhi. Segmentation of Lung Nodules Based on Multi-receptive Field and Grouping Attention Mechanism[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 76 -87 .
[10] YU Siting, PENG Jingjing, PENG Zhenyun. Rank Constraint Least Square Symmetric Semidefinite Solutions and Its Optimal Approximation of the Matrix Equation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 136 -144 .