Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (1): 67-75.doi: 10.16088/j.issn.1001-6600.2022030403

Previous Articles     Next Articles

Improved SVPWM Strategy for VIENNA Rectifier with Midpoint Balance

WANG Dangshu1*, YANG Yaqiang 1, YI Jiaan1, DENG Xuan1, DONG Zhen1, WANG Xinxia2   

  1. 1. School of Electronic Control, Xi’an University of Science and Technology, Xi’an Shaanxi 710054, China;
    2. School of Science, Xi’an University of Science and Technology, Xi’an Shaanxi 710054, China
  • Received:2022-03-04 Revised:2022-06-05 Online:2023-01-25 Published:2023-03-07

Abstract: The problem of unbalanced mid-point voltage of VIENNA rectifier will lead to unbalanced voltage stress on the two equalizing capacitors and the main switching device, resulting in the distortion of the input current waveform on the AC side, which greatly reduces the reliability of the system. To solve this problem, this paper studies the effect of the traditional three-level space vector modulation on the midpoint voltage of the VIENNA rectifier, so that an improved SVPWM control strategy is proposed to suppress the fluctuation of the midpoint potential. The combination of the three-phase current polarity on the input side further divides the traditional sector, and through the judgment of the new sector and the adjustment factor of the positive and negative small vectors, the effect of the middle vector is cancelled to achieve the midpoint balance. Finally, compared with the traditional SVPWM, it is verified by simulation that the midpoint potential and current fluctuations of the proposed control strategy are reduced from ±5 V and ±18 A to ±2.5 V and ±7.5 V respectively, which effectively suppresses the problem of midpoint voltage imbalance.

Key words: improved SVPWM control strategy, midpoint voltage unbalance, adjustment factor, VIENNA rectifier, positive and negative small vector

CLC Number: 

  • TM461
[1] 汪洋,汤宽武,赖科星,等.基于动态随机规划的共享电动汽车充电站规划[J].电网技术,2022,46(9):3485-3499.
[2]张谦,邓小松,岳焕展,等.计及电池寿命损耗的电动汽车参与能量-调频市场协同优化策略[J].电工技术学报,2022,37(1):72-81.
[3] LIN Y B,JIA Q,ZHANG F,et al. Research and simulation of three-phase vienna rectifier based on feedforward decoupling control[J]. Journal of Physics:Conference Series,2021,1885:032058.
[4]MADIGAN P. The murder of professor schlick:the rise and fall of the vienna circle[J]. The Heythrop Journal,2021,62(1):192-193.
[5]KUMAR A,SARKAR D,SADHU P K. Power quality improvement in induction heating system using vienna rectifier based on hysteresis controller[J]. Electric Power Components and Systems,2020,48(9/10):892-905.
[6]MUKHERJEE D, KASTHA D.Voltage sensorless control of VIENNA rectifier in the input current oriented reference frame[J]. IEEE Transactions on Power Electronics,2019,34(8):8079-8091.
[7]刘森森,李宾,杭丽君,等.一种新型电网三相不平衡时VIENNA整流器的控制方法[J].中国电机工程学报,2012,32(21):54-62.
[8]高瞻,葛琼璇,李耀华,等.一种基于载波实现的三电平中点钳位变流器零矢量首发SVPWM方法[J].电工技术学报,2020,35(10):2194-2205.
[9]董羽翔. VIENNA整流器中点电位平衡及低频振荡抑制研究[D].济南:山东大学,2021.
[10]王君瑞,贾思宁,向上,等.带中点电位平衡的VIENNA整流器反推控制研究[J].电源学报,2021,19(5):1-8.
[11]姜海鹏,刘永强.带中点电位平衡控制的VIENNA整流器简化SVPWM双闭环控制[J].电机与控制学报,2014,18(2):35-41.
[12]宋卫章,黄骏,钟彦儒,等.带中点电位平衡控制的Vienna整流器滞环电流控制方法[J].电网技术,2013,37(7):1909-1914.
[13]黄磊. 三相三电平VIENNA整流器设计与中点电压均衡研究[D].成都:西南交通大学,2019.
[14] CHEN L,XIAO H H,GUO Q,et al. Direct power control strategy for three-phase vienna rectifier[J]. Journal of Physics:Conference Series,2021,1754:012115.
[15]党超亮,同向前,黄晶晶,等.基于等效载波SVM的Vienna整流器比例重复控制[J].电力电子技术,2016,50(12):59-62,70.
[16]张哲,邢岩,张犁,等.三相Vienna整流器的载波断续脉宽调制优化算法[J].中国电机工程学报,2022,42(22):8288-8297.
[17]赵红雁. 三相三电平VIENNA整流器控制策略研究[D]. 北京:北京交通大学,2018.
[18]李文善,温旭辉,张剑,等.一种三电平虚拟空间矢量调制简化方法[J].电力电子技术,2021,55(9):112-114.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Jiu-cheng, LI Xiao-yan, LI Shuang-qun, ZHANG Ling-jun. Feature Images Retrieval Method of Tolerance Granular-basedMulti-level Texture[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 186 -187 .
[2] HU Yucong, XIE Yichen,HUANG Jingxiang. The Change of Private Car Travel Rate under the Influence of Policy: a Case Study of Guangzhou[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 98 -105 .
[3] LIANG Bixia, HUANG Jinlong, HAN Lixia,WU Zhengjun. Winter Fertility of Pomacea canaliculata in Guilin,China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 166 -173 .
[4] HU Jinming, WEI Duqu. Hybrid Projective Synchronization of Fractional-order PMSM with Different Orders[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 1 -8 .
[5] CHEN Defu, XIE Yulin, LIANG Xiaoyun, CHEN Zhilin. Catalogue of Formicidae in Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 116 -157 .
[6] HOU Qianqian, FANG Zhigang, QIN Yu, ZHU Yiwen. Study on the Polarization of Fe4P Clusters[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 140 -146 .
[7] BAI Defa, XU Xin, WANG Guochang. Review of Generalized Linear Models and Classification for Functional Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 15 -29 .
[8] ZENG Qingfan, QIN Yongsong, LI Yufang. Empirical Likelihood Inference for a Class of Spatial Panel Data Models[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 30 -42 .
[9] CHEN Zhiming, ZHANG Jiang, QIU Hanqing, DAI Yingcheng, WU Yuxin, LI Jianjun. High Resolution Remote Sensing Image Classification Based on Dense Connection[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 88 -94 .
[10] ZHANG Xilong, HAN Meng, CHEN Zhiqiang, WU Hongxin, LI Muhang. Survey of Ensemble Classification Methods for Complex Data Stream[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 1 -21 .