Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (1): 58-66.doi: 10.16088/j.issn.1001-6600.2022030903

Previous Articles     Next Articles

SOC Estimation of Lithium Ion Battery Based on Adaptive Fading Extended Kalman Filter

ZHAO Zhonghua, YAN Xiaofeng, TONG Youwei*   

  1. School of Information and Communication, Guilin University of Electronic Technology, Guilin Guangxi 541004,China
  • Received:2022-03-09 Revised:2022-05-10 Online:2023-01-25 Published:2023-03-07

Abstract: The accurate estimation of battery state of charge (SOC) is very important for the management of electric vehicle power battery, and electric vehicles often encounter the mutation of SOC data in actual operation. At the same time, there are some errors in the established battery models and noise models, which lead to the poor self adaptability and robustness of the traditional extended Kalman filter algorithm in the process of SOC estimation. To solve these problems, this paper proposes to use the adaptive fading extended Kalman filter algorithm (AFEKF) to estimate the SOC of lithium-ion battery. The fading factor is introduced to adaptively iterate the system noise covariance, so as to update the optimal Kalman gain in real time and reduce the influence of factors such as data burst and battery model error.It can be seen from the experimental comparison under complex working conditions, thatcompared with the standard EKF, the SOC estimation accuracy of AFEKF can be improved by about 0.78% under NEDC condition and 0.5% under variable current condition. At the same time, it can converge to the real value faster and more smoothly when the initial value of battery SOC is inaccurate, which shows that AFEKF algorithm has higher estimation accuracy and better robustness than EKF.

Key words: state of charge (SOC), parameter identification, adaptive fading extended Kalman filter (AFEKF), lithium ion battery, second order RC model

CLC Number: 

  • TM912
[1] 吴春芳. 动力电池SOC估算综述[J]. 电源技术,2017,41(12):1795-1798.
[2]徐尖峰,张颖,甄玉,等. 基于安时积分法的电池SOC估算[J]. 汽车实用技术,2018(18):9-11,23.DOI:10.16638/j.cnki.1671-7988.2018.18.004.
[3]HU Y H, WANG Z P. Study on SOC estimation of lithium battery based on improved BP neural network[C]// 2019 8th International Symposium on Next Generation Electronics(ISNE). Piscataway, NJ: IEEE, 2019:1-3. DOI:10.1109/ISNE.2019.8896605.
[4]PLETT G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: part 3. state and parameter estimation[J]. Journal of Power Sources, 2004, 134(2):277-292. DOI:10.1016/j.jpowsour.2004.02.033.
[5]高文敬,高松,侯恩广. 基于滑模变结构的卡尔曼滤波对电池SOC的估算[J]. 广西大学学报(自然科学版),2017,42(6):2067-2073.DOI:10.13624/j.cnki.issn.1001-7445.2017.2067.
[6]方磊,陈勇,赵理,等. 基于模糊控制的扩展卡尔曼滤波SOC估计研究[J].系统仿真学报,2018,30(1):325-331. DOI:10.16182/j.issn1004731x.joss.201801043.
[7]WANG L M,LU D,LIU Q,et al. State of charge estimation for LiFePO4 battery via dual extended kalman filter and charging voltage curve[J]. Electrochimica Acta,2019,296:1009-1017. DOI:10.1016/j.electacta.2018.11.156.
[8]孙立珍,刘广忱,田桂珍,等. 基于近似二阶EKF的锂离子电池SOC估算[J]. 电池,2019,49(5):387-391. DOI:10.19535/j.1001-1579.2019.05.006.
[9]王文亮,何锋,郑永樑,等. 基于RLS-EKF联合算法的锂电池SOC估算[J]. 电源技术,2020,44(10):1498-1501,1505. DOI:10.3969/j.issn.1002-087X.2020.10.024.
[10]李军,张俊,张世义. 基于ABP-EKF算法的锂电池SOC估计[J]. 重庆交通大学学报(自然科学版),2021,40(3):135-140. DOI:10.3969/j.issn.1674-0696.2021.03.21.
[11]RAHMAN M A,ANWAR S,IZADIAN A. Electrochemical model-based condition monitoring via experimentally identifiedli-ion battery model and HPPC[J]. Energies,2017,10(9):1266. DOI:10.3390/en10091266.
[12]杨文天,李征. 关于锂电池Thevenin模型的仿真研究[J]. 仪表技术,2017(10):40-43.
[13]王党树,王新霞. 基于扩展卡尔曼滤波的锂电池SOC估算[J]. 电源技术,2019,43(9):1458-1460. DOI:10.3969/j.issn.1002-087X.2019.09.013.
[14]邱望彦,李荣冰,刘建业. 基于改进自适应渐消卡尔曼滤波的通用航空GNSS/微惯性组合导航算法研究[J]. 电子测量技术,2020,43(10):95-100. DOI:10.19651/j.cnki.emt.2004119.
[15]WANG S Y,CHAO Y,DUAN S K,et al. A modified variational Bayesian noise adaptive Kalman filter[J]. Circuit, Systems, and Signal Processing,2017,36(10) :4260-4277.
[16]胡辉,彭雄明,杨德进,等.新的自适应渐消拓展卡尔曼滤波在GPS定位中的应用[J]. 火力与指挥控制,2016,41(3):177-182. DOI:10.3969/j.issn.1002-0640.2016.03.043.
[17]徐定杰,贺瑞,沈锋,等. 基于新息协方差的自适应渐消卡尔曼滤波器[J]. 系统工程与电子技术,2011,33(12):2696-2699. DOI:10.3969/j.issn.1001-506X.2011.12.23.
[18]HE Q Z,ZHANG W G,LIU X X, et al. Noise rejection and anti-divergence of key sensors in a flight control system based on adaptive fading EKF[C]// 2018 IEEE CSAA Guidance,Navigation and Control Conference(CGNCC). Piscataway, NJ:IEEE,2018:1-6. DOI:10.1109/GNCC42960.2018.9019180.
[19]王越,李立伟. 基于扩展卡尔曼滤波器的锂电池SOC估算仿真研究[J]. 计算机与数字工程,2020,48(1):206-211. DOI:10.3969/j.issn.1672-9722.2020.01.039.
[20]张远进,吴华伟,叶从进. IFA-EKF的锂电池SOC估算[J]. 储能科学与技术,2020,9(1):117-123.
[21]LI J B,YE M,JIAO S J,et al. A novel state estimation approach based on adaptive unscented Kalman filter for electric vehicles[J]. IEEE Access,2020,8:185629-185637. DOI:10.1109/ACCESS.2020.3030260.
[1] WANG Rui, SONG Shuxiang, XIA Haiying. Estimation of Lithium Battery SOC with Fusion Impedance Model and Extended Kalman Filtering [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 1-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WU Zhu,TIAN Manman,TAN Qiming, CHEN Zhen, WANG Qiuping, HE Jun. Determination of Ginkgolides in Yinlan Tongluo Oral Liquid by HPLC-RID[J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 87 -92 .
[2] XU Jiu-cheng, LI Xiao-yan, LI Shuang-qun, ZHANG Ling-jun. Feature Images Retrieval Method of Tolerance Granular-basedMulti-level Texture[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 186 -187 .
[3] RAN Hao, ZHOU Shan-yi. Checklist of Chinese Ants: the Formicomorph Subfamilies(Hymenoptera:Formicidae)(Ⅰ)[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 65 -73 .
[4] ZHANG Xiaolei, ZHAO Wei, WANG Fanggui. On φ-flat Cotorsion Theory[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 119 -124 .
[5] WU Lingyu, LAN Yang, XIA Haiying. Retinal Image Registration Using Convolutional Neural Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 122 -133 .
[6] WEN Peng, WANG Yaqing, TANG Shengda. Determination of Video Streaming Buffer Threshold Constrainted with Initial Delay and Hysteresis Probability[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 147 -157 .
[7] HOU Qianqian, FANG Zhigang, QIN Yu, ZHU Yiwen. Study on the Polarization of Fe4P Clusters[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 140 -146 .
[8] BAI Defa, XU Xin, WANG Guochang. Review of Generalized Linear Models and Classification for Functional Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 15 -29 .
[9] ZENG Qingfan, QIN Yongsong, LI Yufang. Empirical Likelihood Inference for a Class of Spatial Panel Data Models[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 30 -42 .
[10] CHEN Zhiming, ZHANG Jiang, QIU Hanqing, DAI Yingcheng, WU Yuxin, LI Jianjun. High Resolution Remote Sensing Image Classification Based on Dense Connection[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 88 -94 .