Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (6): 163-172.doi: 10.16088/j.issn.1001-6600.2021082104

Previous Articles     Next Articles

Research on Fractal Characteristics of Algal-bacterial Granular Sludge

CHEN Qingfeng1, YU Zhe1, HUANG Shiqi1, YAO Duyang1, CHEN Wei1*, WANG Zongping2   

  1. 1. School of Urban Construction, Wuhan University of Science and Technology, Wuhan Hubei 430065, China;
    2. School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan Hubei 430074, China
  • Received:2021-08-21 Revised:2021-10-11 Online:2022-11-25 Published:2023-01-17

Abstract: The structural stability of algal-bacterial granular sludge (ABGS) would affect the efficiency of wastewater treatment process using ABGS. As a result, this article was based on different aeration period of SBR process and analysis of water quality. The fractal dimension calculation method based on box dimension was used to study the removal efficiency and fractal characteristics of ABGS under different working conditions. The results showed that under the same hydraulic retention time and aeration time, the removal efficiency and morphological characteristics of ABGS were similar in the intermittent aeration cycle time ≤2 h. At a higher aeration rate, the removal rates of COD and TP of ABGS were higher, and the content of microalgae effectively affects the removal of TP. In addition, the fractal dimension of ABGS was between 1.78 and 1.83, which was similar to the morphological characteristics of aerobic granular sludge. The larger the fractal dimension was, the more complex the structure was, the higher the compactness was, and the better the settlement performance was.

Key words: bacteria and algae symbiosis, aerobic granular sludge, SBR process, box dimension, fractal characteristics

CLC Number: 

  • X703.1
[1] 肖飞, 丁旭升, 王维红.基于文献计量学分析的好氧颗粒污泥研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 1-14.
[2] 李伟. 菌藻共生好氧颗粒污泥的形成机理及其资源化利用研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
[3] JI B, ZHU L, WANG S L, et al. Temperature-effect on the performance of non-aerated microalgal-bacterial granular sludge process in municipal wastewater treatment[J]. Journal of Environmental Management, 2021,282: 111955.
[4] WANG S L, JI B, ZHANG M, et al. Tetracycline-induced decoupling of symbiosis in microalgal-bacterial granular sludge[J]. Environmental Research, 2021, 197: 111095.
[5] WANG S L, ZHU L, JI B, et al. Microalgal-bacterial granular sludge process in non-aerated municipal wastewater treatment under natural day-night conditions: performance and microbial community[J]. Water, 2021,13(11): 1479.
[6] 孙晓杰, 李倩, 吴燕华, 等. SBR中煤粉粒径对模拟生活污水处理效果的影响[J]. 桂林理工大学学报, 2022, 42(1): 192-195.
[7] 秦永丽, 蒋永荣, 孙晓杰. 独立园区夏冬两委污水处理及微生物群落特征分析[J]. 桂林电子科技大学学报, 2021, 41(4): 329-335.
[8] 黄付平, 成官文, 邹清川. 城镇污水处理厂试运行效果及其能耗: 以贵港石卡镇污水处理厂为例[J]. 桂林理工大学学报, 2018, 38(1): 145-149.
[9] 肖飞, 董文明, 王维红. 基于响应面法优化污水厂脱氮工艺[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 210-221.
[10] 刘琳, 叶嘉琦, 刘玉洪, 等. 好氧污泥-微藻耦合颗粒的培养及特性研究[J]. 中国环境科学, 2017,37(7): 2536-2541.
[11] 刘凤丹. 菌藻共生颗粒污泥的培养过程及微生物群落结构演替特征研究[D]. 西安: 西安建筑科技大学, 2020.
[12] 周利超. 菌藻共生颗粒污泥的培养及EPS在其过程中的作用机制[D].西安: 西安建筑科技大学, 2020.
[13] 张冰. 菌藻共生好氧颗粒污泥的形成机理及基于QS的强化机制[D]. 哈尔滨: 哈尔滨工业大学, 2020.
[14] 张树军, 李定昌, 高景峰, 等. SBR反应器中不同粒径成熟好氧颗粒污泥的分形表征[J]. 安全与环境学报, 2018,18(2): 691-696.
[15] 郝凯越, 李远威, 张宁, 等. MATLAB环境下分形维数在活性污泥SEM图像中的应用[J]. 环境科学与技术, 2020,43(7): 22-27.
[16] 高景峰, 苏凯, 张倩, 等. 不同碳源培养的成熟好氧颗粒污泥的分形表征[J]. 环境科学, 2010,31(8): 1871-1876.
[17] JIN B, WILÉN B M, LANT P, et al. A comprehensive insight into floc characteristics and their impact on compressibility and settleability of activated sludge[J]. Chemical Engineering Journal, 2003,95(1/2/3): 221-234.
[18] LI Z H, GUO Y, HANG Z Y, et al. Simultaneous evaluation of bioactivity and settleability of activated sludge using fractal dimension as an intermediate variable[J]. Water Research, 2020,178: 115834.
[19] FAN S Q, JI B, ABU HASAN H, et al. Microalgal-bacterial granular sludge process for non-aerated aquaculture wastewater treatment[J]. Bioprocess and Biosystems Engineering, 2021, 44(8): 1733-1739.
[20] 彭安,刘炎炎,乔稳超,等. 原位曝气对底泥中污染物释放的影响研究[J]. 施工技术, 2020,49(18): 90-92,98. DOI: 10.7672/sgjs2020180090.
[21] 唐琳钦, 王安柳, 宿程远, 等. 不同氮源对好氧颗粒污泥理化特性及微生物群落影响[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 144-153. DOI: 10.16088/j.issn.1001-6600.2020061301.
[22] 王颖. 细微泥沙粒径对活性污泥MLVSS/MLSS的影响及预测研究[D]. 重庆: 重庆大学, 2016.
[23] 水和废水监测分析方法指南编委会.水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社,2002.
[24] LOVATO T, CIAVATTA S, BRIGOLIN D, et al. Modelling dissolved oxygen and benthic algae dynamics in a coastal ecosystem by exploiting real-time monitoring data[J]. Estuarine Coastal and Shelf Science, 2013,119: 17-30.
[25] SHAO Y T, LIU G H, WANG Y, et al. Sludge characteristics, system performance and microbial kinetics of ultra-short-SRT activated sludge processes[J]. Environment International, 2020,143: 105973.
[26] YUAN D Q, WANG Y L, FENG J. Contribution of stratified extracellular polymeric substances to the gel-like and fractal structures of activated sludge[J]. Water Research, 2014,56: 56-65.
[27] SHRESTHA S, KULANDAIVELU J, REBOSURA M R, et al. Revealing the variations in physicochemical, morphological, fractal, and rheological properties of digestate during the mesophilic anaerobic digestion of iron-rich waste activated sludge[J]. Chemosphere, 2020,254: 126811.
[28] 吕泽昆. 图像分形维数的计盒方法改进[J]. 电子技术与软件工程, 2020(11): 144-145.
[29] 王晓燕, 陈志杰, 姜友华, 等. 一种计盒维数估算的新方法[J]. 湖北大学学报(自然科学版), 2020, 42(3): 352-358.DOI: 10.3969/j.issn.1000-2375.2020.03.020.
[30] LIU C, ZHAN Y, DENG Q S, et al. An improved differential box counting method to measure fractal dimensions for pavement surface skid resistance evaluation[J]. Measurement, 2021,178(4): 109376.
[31] 国家环境保护总局,国家质量监督检验检疫总局. 城镇污水处理厂污染物排放标准: GB 18918—2002[S]. 北京: 国家环境保护总局,2002.
[32] 国家环境保护总局,国家质量监督检验检疫总局. 地表水环境质量标准: GB 3838—2002[S]. 北京: 中国环境出版社,2002.
[33] MAYO A W, NOIKE T. Effect of glucose loading on the growth behavior of Chlorella vulgaris and heterotrophic bacteria in mixed culture[J]. Water Research, 1994,28(5): 1001-1008.
[34] 丁红. 低碳氮比生活污水脱氮处理技术研究现状[J]. 化工设计通讯, 2021,47(7): 88-89. DOI: 10.3969/j.issn.1003-6490.2021.07.042.
[35] HE Q L, SONG Q, ZHANG S L, et al. Simultaneous nitrification, denitrification and phosphorus removal in an aerobic granular sequencing batch reactor with mixed carbon sources: reactor performance, extracellular polymeric substances and microbial successions[J]. Chemical Engineering Journal, 2018,331: 841-849.
[36] 辛中华, 陈昌仁, 贾蔚. 颗粒污泥形成及特性优化的水力促进技术[J]. 中国资源综合利用, 2019,37(12): 30-32,35. DOI: 10.3969/j.issn.1008-9500.2019.12.008.
[37] 杜接弟. ABR颗粒污泥的分形结构与微生物学特征分析[D]. 北京: 北京林业大学, 2009.
[38] WANG Z Y, ZHENG P. Predicting settling performance of ANAMMOX granular sludge based on fractal dimensions[J]. Water Research, 2017,120: 222-228.
[1] XIAO Fei, DING Xusheng, WANG Weihong. Research Progress of Aerobic Granular Sludge Based on Bibliometric Analysis [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 1-14.
[2] TANG Linqin, WANG Anliu, SU Chengyuan, DENG Xue, ZHAO Lijian, XIAN Yunchuan, CHEN Yu. Effects of Different Nitrogen Sources on Physicochemical Properties andMicrobial Community of Aerobic Granular Sludge [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 144-153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIANG Shi-chu, TIAN Hua-li, TIAN Feng, XIA Yi, QIN Ying-ying. Wetland Vegetation Types and Their Distribution Characteristics in Lijiang River[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 115 -119 .
[2] DU Xuesong,LIN Yong,LIANG Guokun,HUANG Yin,BIN Shiyu, CHEN Zhong,QIN Junqi,ZHAO Yi. Comparison of Low Temperature Resistant Performance between Two Tilapia[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 174 -179 .
[3] YANG Xingxin, LI Yonglan. Body Mass of Four Ethnic Groups of Mongolians in Three Northeast Provinces of China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 180 -186 .
[4] KUANG Xianyan, CHEN Ziru. Mixed Traffic Flow Model of Signalized Intersections Involving Pedestrian Comity[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 1 -15 .
[5] LIU Weiming, CHEN Gangmei, LIN Guanrong, LI Jingning. Coordination Control Method for Toll Station of Freeway and Adjacent Intersection[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 16 -26 .
[6] ZOU Yanli, WANG Yang, LIU Shusheng, YAO Fei. Study of Cascading Failure in the Grid under the Capacity Load Model with Neighbors Degree Information[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 27 -36 .
[7] XIE Lina, JIANG Pinqun, SONG Shuxiang, CEN Mingcan. A Low-Loss, Low-Noise, Wide-Tuned High-Order Cascade N-Path Filter[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 37 -44 .
[8] LUO Lan, ZHOU Nan, SI Jie. New Delay Partition Method for Robust Stability of Uncertain Cellular Neural Networks with Time-Varying Delays[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 45 -52 .
[9] WANG Jian, ZHENG Qifan, LI Chao, SHI Jing. Remote Supervision Relationship Extraction Based on Encoder and Attention Mechanism[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 53 -60 .
[10] XIAO Yiqun, SONG Shuxiang, XIA Haiying. Fast Pedestrian Detection Method Based on Multi-Features    and Implementation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 61 -67 .