Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (6): 154-162.doi: 10.16088/j.issn.1001-6600.2021080801

Previous Articles     Next Articles

Synthesis of Li2FeSiO4/C by Solid-State Reaction and Its Lithium Intercalation/de-Intercalation Property

LI Fushao*, XU Yingxian, WU Qingqing, DENG Mingsen*   

  1. Guizhou Provincial Key Laboratory of Computational Nano-Material Science (Guizhou Education University), Guiyang Guizhou 550018, China
  • Received:2021-08-08 Revised:2021-08-31 Online:2022-11-25 Published:2023-01-17

Abstract: In this paper, Li2FeSiO4 as well as Li2FeSiO4/C was prepared as cathode materials of lithium-ion batteries by direct high temperature solid-sate reaction, and effect of carbonized modification on the structure, electrical conductivity, lithium intercalation/de-intercalation property, and cyclic specific capacity of Li2FeSiO4 was investigated. The result shows that this process of material preparation is economic and scalable. The carbonized composite helps to enhance the electrical conductivity of Li2FeSiO4, and also improves the particle distribution after phase formation reaction of Li2FeSiO4. Most importantly, carbonized composite quite facilitates the lithium intercalation/de-intercalation and greatly promotes the cyclic specific capacity of Li2FeSiO4, and initial discharge capacity of Li2FeSiO4/C under rate of 0.1C reaches above 120 mAh/g, much higher than the 20 mAh/g of Li2FeSiO4. In conclusion, Li2FeSiO4 is a most promising cathode material of lithium-ion batteries, and carbonized modification can overcome the shortcomings of this cathode material in aspects of electrical conductivity, electrochemical performance, and so on.

Key words: lithium-ion batteries, silicates, cathode material, lithium intercalation/de-intercalation property, electrochemical techniques

CLC Number: 

  • TM911
[1] LI W D, SONG B H, MANTHIRAM A. High-voltage positive electrode materials for lithium-ion batteries[J]. Chemical Society Reviews, 2017, 46(10): 3006-3059.
[2] ZHANG Y X, YANG Z J, TIAN C X. Probing and quantifying cathode charge heterogeneity in Li ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(41): 23628-23661.
[3] LING J, KARUPPIAH C, KRISHNAN S G, et al. Phosphate polyanion materials as high-voltage lithium-ion battery cathode: a review[J]. Energy and Fuels, 2021, 35(13): 10428-10450.
[4] PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194.
[5] 童汇, 胡国华, 胡国荣, 等. 锂离子电池正极材料LiFePO4/C的合成研究[J].无机化学学报, 2006, 22(12):2159-2164.
[6] KOBAYASHI S, KUWABARA A, FISHER C A J, et al. Atomic-scale analysis of biphasic boundaries in the lithium-ion battery cathode caterial LiFePO4[J]. ACS Applied Energy Materials 2020, 3(8): 8009-8016.
[7] 蒋皓宇, 肖剑荣, 赵航. 复合正极材料xLiFePO4·yLi3V2(PO4)3/C的合成及其电化学性能[J]. 桂林理工大学学报, 2015, 35(2): 358-363.
[8] ISLAM M S, DOMINKO R, MASQUELIER C, et al. Silicate cathodes for lithium batteries: alternatives to phosphates? [J]. Journal of Materials Chemistry, 2011, 21(27): 9811-9818.
[9] NISHIMURA S I, HAYASE S, KANNO R, et al. Structure of Li2FeSiO4[J]. Journal of the American Chemical Society, 2008, 130(40): 13212-13213.
[10] SARACIBAR A, VAN DER VEN A, ARROYO-DE DOMPABLO M E. Crystal structure, energetics, and electrochemistry of Li2FeSiO4 polymorphs from first principles calculations[J]. Chemistry of Materials, 2012, 24(3): 495-503.
[11] NYTÉN A, STJERNDAHL M, RENSMO H, et al. Surface characterization and stability phenomena in Li2FeSiO4 studied by PES/XPS[J]. Journal of Materials Chemistry, 2006, 16(34): 3483-3488.
[12] NYTÉN A, ABOUIMRANE A, ARMAND M, et al. Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material[J]. Electrochemistry Communications, 2005, 7(2): 156-160.
[13] MALI G, SIRISOPANAPORN C, MASQUELIER C, et al. Li2FeSiO4 polymorphs probed by 6Li MAS NMR and 57Fe Mssbauer spectroscopy[J]. Chemistry of Materials, 2011, 23(11): 2735-2744.
[14] WEI B, LU X, VOISARD F, et al. In situ TEM investigation of electron irradiation induced metastable states in lithium-ion battery cathodes: Li2FeSiO4 versus LiFePO4 [J]. ACS Applied Energy Materials, 2018, 1(7): 3180-3189.
[15] HERGETT W, NEEF C, MEYER H P, et al. Challenges in the crystal growth of Li2FeSiO4[J]. Journal of Crystal Growth, 2021, 556: 125995.
[16] PENG Z D, CAO Y B, HU G R, et al. Microwave synthesis of Li2FeSiO4 cathode materials for lithium-ion batteries[J]. Chinese Chemical Letters, 2009, 20(8): 1000-1004.
[17] MUTHU MUNIYANDI T, BALAMURUGAN S, NARESH N, et al. Li2FeSiO4/C aerogel: a promising nanostructured cathode material for lithium-ion battery applications[J]. Journal of Alloys and Compounds, 2021, 887: 161341.
[18] 李黎明, 郭华军, 饶程, 等.湿化学法-高温固相法合成锂离子电池正极材料Li2FeSiO4的研究[J]. 材料导报, 2010, 24(S2): 337-340.
[19] 彭春丽, 张佳峰, 曹璇, 等. 锂离子电池正极材料Li2FeSiO4的研究进展[J]. 化工新型材料, 2011, 39(1): 28-31.
[20] LI L M, GUO H J, LI X H, et al. Effects of roasting temperature and modification on properties of Li2FeSiO4/C cathode[J]. Journal of Power Sources, 2009, 189(1): 45-50.
[21] ZHANG L, NI J F, WANG W C, et al. 3D porous hierarchical Li2FeSiO4/C for rechargeable lithium batteries[J]. Journal of Materials Chemistry A, 2015, 3(22): 11782-11786.
[22] GONG Z L, LI Y X, HE G N, et al. Nanostructured Li2FeSiO4 electrode material synthesized through hydrothermal-assisted sol-gel process[J]. Electrochemical and Solid-State Letters, 2008, 11(5): A60.
[23] YABUUCHI N, YAMAKAWA Y, YOSHII K, et al, Low-temperature phase of Li2FeSiO4: crystal structure and a preliminary study of electrochemical behavior[J]. Dalton Transactions, 2011, 40(9): 1846-1848.
[24] ZAGHIB K, AIT SALAH A, RAVET N, et al. Structural, magnetic and electrochemical properties of lithium iron orthosilicate[J]. Journal of Power Sources, 2006, 160(2): 1381-1386.
[25] 王霞. 锂离子电池正极材料Li2FeSiO4/C的改性研究[D]. 临汾:山西师范大学, 2013.
[26] LARSSON P, AHUJA R, NYTÉN A, et al. An ab initio study of the Li-ion battery cathode material Li2FeSiO4[J]. Electrochemistry Communications, 2006, 8(5): 797-800.
[27] NYTÉN A, KAMALI S, HÄGGSTRÖM L, et al. The lithium extraction/insertion mechanism in Li2FeSiO4[J]. Journal of Materials Chemistry, 2006, 16(23): 2266-2272.
[28] LV X B, ZHAO X, WU S Q, et al. Fe-Si networks and charge/discharge-induced phase transitions in Li2FeSiO4 cathode materials[J]. Physical Chemistry Chemical Physics, 2018, 20(21): 14557-14563.
[29] 王瑞, 宋树祥, 夏海英.融合阻抗模型与扩展卡尔曼滤波的锂离子电池荷电状态估算[J]. 广西师范大学学报(自然科学版), 2021, 39(3):1-10.
[30] XU Y M, SHEN W, ZHANG A L, et al. Template-free hydrothermal synthesis of Li2FeSiO4 hollow spheres as cathode materials for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(32): 12982-12990.
[31] YAN X T, HOU Y H, ZHENG S H, et al. Benefits of Ga, Ge and As substitution in Li2FeSiO4: a first-principles exploration of the structural, electrochemical and capacity properties[J]. Physical Chemistry Chemical Physics, 2020, 22(26): 14712-14719.
[32] ZENG Y, CHIU H C, OUYANG B, et al. Unveiling the mechanism of improved capacity retention in Pmn21 Li2FeSiO4 cathode by cobalt substitution[J]. Journal of Materials Chemistry A, 2019, 7(44): 25399-25414.
[33] KUMAR A, JAYAKUMAR O D, JAGANNA T H, et al. Mg doped Li2FeSiO4/C nanocomposites synthesized by the solvothermal method for lithium ion batteries[J]. Dalton Transactions, 2017, 46(38): 12908-12915.
[34] SINGH S, RAJ A K, SEN R, et al. Impact of Cl doping on electrochemical performance in orthosilicate (Li2FeSiO4): a density functional theory supported experimental approach[J]. ACS Applied Materials and Interfaces, 2017, 9(32): 26885-26896.
[1] ZHAO Dongjiang, MA Songyan, TIAN Xiqiang. Applications of CoSe2/C Catalyst in Electrocatalytic Oxygen Reduction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 30-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WU Lei, HUANG Yun-feng, NONG Dong-xin, XU Wei-bin. New Records of Orchids from Guangxi,China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 57 -59 .
[2] KUANG Xianyan, CHEN Ziru. Mixed Traffic Flow Model of Signalized Intersections Involving Pedestrian Comity[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 1 -15 .
[3] LIU Weiming, CHEN Gangmei, LIN Guanrong, LI Jingning. Coordination Control Method for Toll Station of Freeway and Adjacent Intersection[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 16 -26 .
[4] ZOU Yanli, WANG Yang, LIU Shusheng, YAO Fei. Study of Cascading Failure in the Grid under the Capacity Load Model with Neighbors Degree Information[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 27 -36 .
[5] XIE Lina, JIANG Pinqun, SONG Shuxiang, CEN Mingcan. A Low-Loss, Low-Noise, Wide-Tuned High-Order Cascade N-Path Filter[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 37 -44 .
[6] LUO Lan, ZHOU Nan, SI Jie. New Delay Partition Method for Robust Stability of Uncertain Cellular Neural Networks with Time-Varying Delays[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 45 -52 .
[7] WANG Jian, ZHENG Qifan, LI Chao, SHI Jing. Remote Supervision Relationship Extraction Based on Encoder and Attention Mechanism[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 53 -60 .
[8] XIAO Yiqun, SONG Shuxiang, XIA Haiying. Fast Pedestrian Detection Method Based on Multi-Features    and Implementation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 61 -67 .
[9] WANG Xun, LI Tinghui, PAN Xiao, TIAN Yu. Image Segmentation Method Based on Improved Fuzzy C-means Clustering and Otsu Maximum Variance[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 68 -73 .
[10] ZHONG Xianggui, SUN Yue, WU Xianghua. Nearly CAP*-Subgroups and p-Supersolvability of Finite Groups[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 74 -78 .