Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (4): 115-125.doi: 10.16088/j.issn.1001-6600.2021091402
Previous Articles Next Articles
WENG Ye1, SHAO Desheng1,2*, GAN Shu1,3
CLC Number:
[1] 杨元喜, 曾安敏. 大地测量数据融合模式及其分析[J].武汉大学学报(信息科学版), 2008, 33(8): 771-774. [2]舒红, 史文中. 浅谈测量平差到空间数据分析的可靠性理论延伸[J].武汉大学学报(信息科学版), 2018, 43(12): 1979-1985,1993. [3]杨元喜, 曾安敏, 景一帆. 函数模型和随机模型双约束的GNSS数据融合及其性质[J].武汉大学学报(信息科学版), 2014, 39(2): 127-131. [4]HOERL A E, KENNARD R W. Ridge regression: biased estimation for non-orthogonal problems[J].Technometrics, 2000, 42(1): 80-86. [5]HOERL A E, KENNARD R W. Ridge regression: applications to nonorthogonal problems[J].Technometrics, 1970, 12(1): 69-82. [6]MASSY W F. Principal compoents regression in exploratory statistical research[J].Journal of the American Statistical Association,1965,60(309):234-256. [7]LIU K J. A new class of blased estimate in linear regression[J].Communications in Statistics-Theory and Methods, 1993, 22(2): 393-402. [8]雷庆祝. 线性模型中回归系数岭估计的相合性[J].广西师范大学学报(自然科学版), 1992, 10(1): 21-24. [9]雷庆祝, 王成名, 王炜炘. 线性模型中误差方差岭估计的大样本性质[J].广西师范大学学报(自然科学版), 1994, 12(2): 8-14. [10]郭双, 王肖南. 线性测量误差模型的Liu估计[J].统计与决策, 2015(17): 68-70. [11]吴平, 李开丁. 线性回归模型Liu估计的新研究[J].应用数学, 2008, 21(S1): 37-39. [12]廖勋. 线性等式约束的奇异线性模型的Liu型估计[J].重庆工商大学学报(自然科学版), 2012, 29(3): 7-11. [13]黄文焕, 戚佳金, 黄南天. 带线性约束的回归模型参数的Liu估计方法[J].系统科学与数学, 2009, 29(7): 937-946. [14]黄荣臻, 朱宁, 邓超海, 等. 线性回归模型的一类新约束型LIU估计[J].西南师范大学学报(自然科学版), 2019, 44(11): 1-10. [15]BAYE M R, PARKER D F. Combining ridge and principal component regression:a money demand illustration[J].Communications in Statistics-Theory and Methods, 1984, 13(2): 195-205. [16]武汉大学测绘学院测量平差学科组. 误差理论与测量平差基础[M].第3版.武汉:武汉大学出版社, 2014. [17]崔希璋,放宗铸,陶本藻,等. 广义测量平差[M].武汉: 武汉大学出版社,2009. [18]GOLUB G H, VAN LOAN C F. An analysis of the total least squares problem[J].SIAM Journal on Numerical Analysis, 1980, 17(6): 883-893. [19]鲁铁定. 总体最小二乘平差理论及其在测绘数据处理中的应用[D].武汉: 武汉大学,2010. [20]林东方, 朱建军, 宋迎春, 等. 正则化的奇异值分解参数构造法[J].测绘学报, 2016, 45(8): 883-889. [21]姜兆英, 刘国林, 于胜文. 病态方程基于Liu估计的一种迭代估计新方法[J].武汉大学学报(信息科学版), 2017, 42(8): 1172-1178. [22]魏文科, 王昕. 部分线性回归模型的主成分Liu估计[J].北京信息科技大学学报(自然科学版), 2018, 33(4): 47-53. [23]王乐洋, 于冬冬. 病态总体最小二乘问题的虚拟观测解法[J].测绘学报, 2014, 43(6): 575-581. [24]朱英刚, 闫有朋, 王良. 带等式约束的加权最小二乘法参数估计[J].中国电力, 2008, 41(7): 25-27. [25]嵇昆浦. 等式约束病态总体最小二乘模型的正则化解及其精度评定[J].大地测量与地球动力学, 2019, 39(12): 1304-1309. |
[1] | BAI Defa, XU Xin, WANG Guochang. Review of Generalized Linear Models and Classification for Functional Data [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 15-29. |
[2] | ZENG Qingfan, QIN Yongsong, LI Yufang. Empirical Likelihood Inference for a Class of Spatial Panel Data Models [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 30-42. |
[3] | ZHANG Zhifei, DUAN Qian, LIU Naijia, HUANG Lei. High-dimensional Nonlinear Regression Model Based on JMI [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 43-56. |
[4] | CHEN Zhongxiu, ZHANG Xingfa, XIONG Qiang, SONG Zefang. Estimation and Test for Asymmetric DAR Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 68-81. |
[5] | SUN Ye, JIANG Jingjing, WANG Chunjie. Bayesian Estimation of Current Status Data with Generalized Extreme Value Regression Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 82-90. |
[6] | HE Jianfeng, SHI Li. Sampling Method Based on Slice Inverse Regression in Big Data [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 91-99. |
[7] | XU Ping, ZHONG Simin, LI Binbin, XIONG Wenjun. Conditional Independence Screening in Sparse Ultra-high Dimensional Nonparametric Additive Models [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 100-107. |
[8] | REN Shuai, CHENG Wenhui, ZHOU Jie. Estimation of the Mixed Generalized Partially Linear Additive Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 108-124. |
[9] | LIU Yu, ZHOU Wen, LI Ni. Semiparametric Rate Models for Recurrent Event Data with Cure Rate via Empirical Likelihood [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 139-149. |
[10] | SHU Ting LUO Youxi LI Hanfang. Double Penalty Quantile Regression for Panel Data Models Based on Bayesian Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 150-165. |
[11] | ZHU Enwen, ZHU Anqi, WANG Jiedan, LIU Yujiao. Research on Wind Power Short-term Prediction Based on EEMD-GA-BP Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 166-174. |
[12] | YAN Haibo, DENG Gang, JIANG Yunlu. Robust Estimation of Multivariate Linear Regression Model Based on MRCD Estimation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 175-186. |
[13] | KONG Lingtao, SONG Xiangjun, WANG Xiaomin. Sample Size Determination for the Additive Hazards Model with Current Status Data [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 187-194. |
[14] | LIANG Xin, CHEN Xiaoling, ZHANG Xingfa, LI Yuan. A Class of Autoregressive Moving Average Model with GARCH Type Errors [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 195-205. |
[15] | LI Chengen, PAN Xiaoying, WANG Meihan, SHI Jianhua. Research on China’s Grain Output Based on Interval Data Measurement [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 206-215. |
|