Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (4): 126-135.doi: 10.16088/j.issn.1001-6600.2021082704

Previous Articles     Next Articles

Fast Algorithm for the Hilbert Transform of a Signalby Using Cubic Splines

QIN Xiaoxiao, YU Bo*   

  1. College of Science, China Three Gorges University, Yichang Hubei 443002, China
  • Published:2022-08-05

Abstract: The computation for the Hilbert transform of a given signal over a finite interval is an important problem in signal processing. Although the Hilbert spline transform (HST) method with order three demonstrates high order computational accuracy and the speed of O(nlog n), there is a disadvantage of this method: the grid of the B-spline knots must be different from the sample points to avoid singularities in the computation. To solve this problem, the spline function with order four is used to implement the Hilbert spline transform. To prove the effectiveness of the proposed method,several function of the Hilbert transform are calculated by using the cubic spline. Numerical results show that the proposed method has excellent performance in both computational speed and computational accuracy.

Key words: Hilbert transform, splines, Hilbert spline transform, fast algorithm, cubic splines

CLC Number: 

  • O174
[1] HAHN S L. Hilbert transforms in signal processing[M]. Boston: Artech House, 1996.
[2]SMITH W E, LYNESS J N. Applications of Hilbert transform theory to numerical quadrature[J]. Mathematics of Computation, 1969, 23(106): 231-252.
[3]陈学华, 贺振华, 黄德济. 地震资料的高阶伪希尔伯特变换边缘检测[J]. 地球物理学进展, 2008, 23(4): 1106-1110.
[4]李红星, 饶溯, 陶春辉, 等. 广义希尔伯特变换地震边缘检测方法研究[J]. 石油地球物理勘探, 2015, 50(3): 490-494.
[5]徐赫, 陈学华, 吕丙南, 等. 任意旋转加窗希尔伯特变换的地震资料体边缘检测方法[J]. 石油地球物理勘探, 2021, 56(3): 536-542.
[6]张国军, 任荣, 韩静静, 等. 希尔伯特变换在配电网故障选线中的应用[J]. 电力系统保护与控制, 2014, 42(10): 23-28.
[7]于洁, 祝长生. 基于希尔伯特变换的自传感电磁轴承实现[J]. 浙江大学学报(工学版), 2015, 49(4): 732-739.
[8]KING F W. Hilbert transforms: Volume 1[M]. Cambridge: Cambridge University Press, 2009.
[9]HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A-Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.
[10]孙晓云, 周文佳, 程久龙, 等. 基于二维HHT的隧道超前探测图像识别与检测[J]. 广西师范大学学报(自然科学版), 2014, 32(1): 26-31.
[11]CHEN Q H, HUANG N, RIEMENSCHNEIDER S, et al. A B-spline approach for empirical mode decompositions[J]. Advances in Computational Mathematics, 2006, 24(1): 171-195.
[12]ZHOU C Y, YANG L H, LIU Y J, et al. A novel method for computing the Hilbert transform with Haar multiresolution approximation[J]. Journal of Computational and Applied Mathematics, 2009, 223(2): 585-597.
[13]MICCHELLI C A, XU Y S, YU B. On computing with the Hilbert spline transform[J]. Advances in Computational Mathematics,2013, 38(3): 623-646.
[14]BILATO R, MAJ O, BRAMBILLA M. An algorithm for fast Hilbert transform of real functions[J]. Advances in Computational Mathematics, 2014, 40(5): 1159-1168.
[15]ABD-EL-MALEK M B, HANNA S S. The Hilbert transform of cubic splines[J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 80: 104983.
[16]POWELL M J D. Approximation theory and methods[M]. Cambridge: Cambridge University Press, 1981.
[17]GOLUB G H, VAN LOAN C F. Matrix computations[M]. 3rd ed. Baltimore: The Johns Hopkins University Press, 1996.
[18]MARPLE L. Computing the discrete-time “analytic” signal via FFT[J]. IEEE Transactions on Signal Processing, 1999, 47(9): 2600-2603.
[1] SUN Zuochen, WANG Qihan, LONG Boyong. A Subclass of Harmonic Univalent Functions [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 54-59.
[2] LI Shan-shan, FEI Ming-gang. Hermite Polynomials Related to the Dunkl-Clifford Analysis [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 73-80.
[3] ZHANG Tai-zhong, LU Heng, CHENG Ya-ping. A Study on a Kind of Compact Extended Cesàro Operators [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(2): 64-67.
[4] JIANG Ying-chun, SUN Qing-qing. A Class of Divergence-free Multiwavelets with Tangential Boundary [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(3): 46-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!