Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (4): 136-144.doi: 10.16088/j.issn.1001-6600.2021092301
Previous Articles Next Articles
YU Siting, PENG Jingjing*, PENG Zhenyun
CLC Number:
[1] BJERHAMMAR A. Rectangular reciprocal matriceswith special reference to geodetic calculations[J]. Bulletiin Géodésique(1946-1975), 1951, 20(1): 188-220. [2]廖安平. 线性流形上矩阵方程AX=B的一类反问题及数值解法[J]. 计算数学,1988, 20(4): 371-376. [3]HIGHAM N J. The symmetric procrustes problem[J]. Bit Numerical Mathematics, 1988, 28(1): 133-143. [4]ALLWRIGHT J C. Positive semidefinite matrices: characterization via conical hulls and least-squares solution of a matrix equation[J]. SIAM Journal on Control Optimization, 1988, 26(3): 537-556. [5]HUA D. On the symmetric solutions of linear matrix equations[J]. Linear Algebra and Its Applications, 1990, 131: 1-7. [6]张磊,谢冬秀,胡锡炎. 线性流形上双对称阵逆特征值问题[J]. 计算数学,2000, 22(2): 129-138. [7]XIE D X, SHENG Y P. Inverse eigenproblem of anti-symmetric and persymmetric matrices and its approximation[J]. Inverse Problems, 2003, 19(1): 217-225. [8]彭振赟. 几类矩阵扩充问题和几类矩阵方程问题[D]. 长沙:湖南大学,2003. [9]LI F Y,PENG J J,PENG Z Y. The least squares stochatic solutions of the matrix equation AX=B[J]. Journal of Algebra Number Theory:Advances and Applications, 2012, 8(1/2):19-39. [10]徐安豹,彭振赟. 矩阵方程AX=B 的范数约束最小二乘解[J]. 桂林电子科技大学学报, 2013, 33(1): 70-73. [11]彭金凤,彭振赟,崔学莲. 矩阵方程AX=B的D对称半正定最小二乘解及其最佳逼近[J]. 桂林电子科技大学学报,2018, 38(2): 162-166. [12]李媛,谢冬秀. 矩阵方程AX=B的可双对称化解及其最佳逼近[J]. 北京信息科技大学学报(自然科学版),2020, 35(1): 49-53. [13]张四保,邓勇. 主理想环上矩阵方程AX=B的对称解[J]. 科学技术与工程,2020, 20(25): 10133-10137. [14]ALBERT A. Condition for positive and nonnegative definite in terms of pseudoinverse[J]. SIAM Journal on Applied Mathematics, 1969, 17(2): 434-440. [15]PENG J J, WANG Q W, PENG Z Y, et al. Solution of symmetric positive semidefinite procrustes problem[J]. Electronic Journal of Linear Algebra, 2019, 35: 543-554. [16]WEI M, WANG Q. On rank-constrained-Hermitian nonnegative-denite least squares solutions to the matrix equation AXAH=B[J]. International Journal Computer-Mathematics, 2007, 84(6): 945-952. [17]ZHANG X, CHENG M Y. The rank-constrained Hermitian nonnegative definite and positive-definite solutions to the matrix equation AXA*=B[J]. Linear Algebra and Its Applications, 2003,370: 163-174. [18]XIAO Q F, HU X Y, ZHANG L. The symmetric minimal rank solution of the matrix equation AX=B and the optimal approximetion[J]. Electronic Journal of Linear Algebra, 2009, 18: 264-273. |
[1] | WU Kangkang, ZHU Xufei, LU Ye, ZHOU Peng, DONG Cui, DAI Qinxuan, ZHOU Runchang. LS-FIR Filter Based on Least Square Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 89-99. |
|