Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (4): 136-144.doi: 10.16088/j.issn.1001-6600.2021092301

Previous Articles     Next Articles

Rank Constraint Least Square Symmetric Semidefinite Solutions and Its Optimal Approximation of the Matrix Equation

YU Siting, PENG Jingjing*, PENG Zhenyun   

  1. College of Mathematics and Computer Science, Guilin University of Electronic Technology, Guilin Guangxi 541004,China
  • Published:2022-08-05

Abstract: Based on the singular value decomposition and spectral decomposition of matrices, the necessary and sufficient conditions for the existence of solutions to rank constraint least square symmetric semidefinite solutions and itsoptimal approximation solution of the matrix equation AX=B are established and, if the solutions exist, the general expression of the solutions are proposed. The computational procedures of the optimal approximation solution, and the numerical examplesshowing the correctness of the theoretical results are given.

Key words: rank constraint matrix, matrix equation, symmetric semidefinite matrices, least square solution, optimal approximation

CLC Number: 

  • O151.21
[1] BJERHAMMAR A. Rectangular reciprocal matriceswith special reference to geodetic calculations[J]. Bulletiin Géodésique(1946-1975), 1951, 20(1): 188-220.
[2]廖安平. 线性流形上矩阵方程AX=B的一类反问题及数值解法[J]. 计算数学,1988, 20(4): 371-376.
[3]HIGHAM N J. The symmetric procrustes problem[J]. Bit Numerical Mathematics, 1988, 28(1): 133-143.
[4]ALLWRIGHT J C. Positive semidefinite matrices: characterization via conical hulls and least-squares solution of a matrix equation[J]. SIAM Journal on Control Optimization, 1988, 26(3): 537-556.
[5]HUA D. On the symmetric solutions of linear matrix equations[J]. Linear Algebra and Its Applications, 1990, 131: 1-7.
[6]张磊,谢冬秀,胡锡炎. 线性流形上双对称阵逆特征值问题[J]. 计算数学,2000, 22(2): 129-138.
[7]XIE D X, SHENG Y P. Inverse eigenproblem of anti-symmetric and persymmetric matrices and its approximation[J]. Inverse Problems, 2003, 19(1): 217-225.
[8]彭振赟. 几类矩阵扩充问题和几类矩阵方程问题[D]. 长沙:湖南大学,2003.
[9]LI F Y,PENG J J,PENG Z Y. The least squares stochatic solutions of the matrix equation AX=B[J]. Journal of Algebra Number Theory:Advances and Applications, 2012, 8(1/2):19-39.
[10]徐安豹,彭振赟. 矩阵方程AX=B 的范数约束最小二乘解[J]. 桂林电子科技大学学报, 2013, 33(1): 70-73.
[11]彭金凤,彭振赟,崔学莲. 矩阵方程AX=B的D对称半正定最小二乘解及其最佳逼近[J]. 桂林电子科技大学学报,2018, 38(2): 162-166.
[12]李媛,谢冬秀. 矩阵方程AX=B的可双对称化解及其最佳逼近[J]. 北京信息科技大学学报(自然科学版),2020, 35(1): 49-53.
[13]张四保,邓勇. 主理想环上矩阵方程AX=B的对称解[J]. 科学技术与工程,2020, 20(25): 10133-10137.
[14]ALBERT A. Condition for positive and nonnegative definite in terms of pseudoinverse[J]. SIAM Journal on Applied Mathematics, 1969, 17(2): 434-440.
[15]PENG J J, WANG Q W, PENG Z Y, et al. Solution of symmetric positive semidefinite procrustes problem[J]. Electronic Journal of Linear Algebra, 2019, 35: 543-554.
[16]WEI M, WANG Q. On rank-constrained-Hermitian nonnegative-denite least squares solutions to the matrix equation AXAH=B[J]. International Journal Computer-Mathematics, 2007, 84(6): 945-952.
[17]ZHANG X, CHENG M Y. The rank-constrained Hermitian nonnegative definite and positive-definite solutions to the matrix equation AXA*=B[J]. Linear Algebra and Its Applications, 2003,370: 163-174.
[18]XIAO Q F, HU X Y, ZHANG L. The symmetric minimal rank solution of the matrix equation AX=B and the optimal approximetion[J]. Electronic Journal of Linear Algebra, 2009, 18: 264-273.
[1] WU Kangkang, ZHU Xufei, LU Ye, ZHOU Peng, DONG Cui, DAI Qinxuan, ZHOU Runchang. LS-FIR Filter Based on Least Square Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 89-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!