Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (5): 141-149.doi: 10.16088/j.issn.1001-6600.2024032001

Previous Articles     Next Articles

Catalytic Properties of Co2Mo2P3 Cluster Analyzed by Density Functional Theory

WU Tinghui, FANG Zhigang*, LIU Li'e, SONG Jingli, SONG Jia   

  1. School of Chemical Engineering, Liaoning University of Science and Technology, Anshan Liaoning 114051, China
  • Received:2024-03-20 Revised:2024-04-12 Online:2024-09-25 Published:2024-10-11

Abstract: Based on topological principles and density functional theory,the catalytic reaction mechanism and the reasons behind the activity of the Co2Mo2P3 cluster were investigated. Using the Gaussian09 program at the B3LYP/Lanl2dz level,full parameter optimization and computational analysis of the cluster's initial configuration were performed. Through an analysis of the contributions of each atom in the Co2Mo2P3 cluster to the HOMO and LUMO orbitals,we found that the Co atoms contribute 53.511% and 59.013% to the frontier orbitals,indicating their potential as active sites in the cluster. Additionally,observations of the density of states and HOMO-LUMO plots revealed that the Co atoms played a significant role in generating the peaks in the Fermi energy levels. Further analysis of the energy gap and Koopmans' theorem showed that configurations 1(4) and 3(4) had strong electron-gaining and electron-donating capabilities,respectively,and possess higher catalytic activity compared with other configurations. These results provide robust support for a deeper understanding of the catalytic performance of the Co2Mo2P3 cluster. The findings of this study offer essential theoretical insights into the catalytic reaction mechanism and activity generation of the Co2Mo2P3 cluster,providing valuable references for further optimizing catalytic performance and designing efficient catalysts.

Key words: Co2Mo2P3 cluster, density functional theory, front-line tracks, catalytic properties, state density, energy gap, Koopmans' theorem

CLC Number:  O641.12
[1] WANG D Z,ZHANG X Y,ZHANG D Z,et al. Influence of Mo/P ratio on CoMoP nanoparticles as highly efficient HER catalysts[J]. Applied Catalysis A:General,2016,511:11-15. DOI: 10.1016/j.apcata.2015.11.029.
[2] ZHANG Y P,JIN Z L,SU Y F,et al. Charge separation and electron transfer routes modulated with Co-Mo-P over g-C3N4 photocatalyst[J]. Molecular Catalysis,2019,462:46-55. DOI: 10.1016/j.mcat.2018.10.009.
[3] 郑新喜,方志刚,秦渝,等. 团簇Fe3Ni3电子性质[J]. 贵州大学学报(自然科学版),2021,38(5):7-12,19. DOI: 10.15958/j.cnki.gdxbzrb.2021.05.02.
[4] ZHENG L Y,LIU C,ZHANG W B,et al. Heterostructured MoP/CoMoP2 embedded in an N,P-doped carbon matrix as a highly efficient cooperative catalyst for pH-universal overall water splitting[J]. Journal of Materials Chemistry A,2024,12(2):1243-1252. DOI: 10.1039/D3TA05328H.
[5] CHEN S R,XU J L,CHEN J Y,et al. Current progress of Mo-based metal organic frameworks derived electrocatalysts for hydrogen evolution reaction[J]. Small,2024,20(1):e2304681. DOI: 10.1002/smll.202304681.
[6] 方志刚,许友,王智瑶,等. 基于量子化学的团簇Co4P非晶态合金析氢反应研究[J]. 江西师范大学学报(自然科学版),2022,46(3):221-226. DOI: 10.16357/j.cnki.issn1000-5862.2022.03.01.
[7] 毛智龙,方志刚,侯欠欠,等. 团簇Co3FeP光谱的预测分析[J]. 江西师范大学学报(自然科学版),2022,46(1):81-86. DOI: 10.16357/j.cnki.issn1000-5862.2022.01.11.
[8] 秦渝,方志刚,张伟,等. 团簇Co3NiB催化析氢活性研究[J]. 江西师范大学学报(自然科学版),2020,44(1):56-62. DOI: 10.16357/j.cnki.issn1000-5862.2020-01-010.
[9] JIANG D L,XU Y,YANG R,et al. CoP3/CoMoP heterogeneous nanosheet arrays as robust electrocatalyst for pH-universal hydrogen evolution reaction[J]. ACS Sustainable Chemistry & Engineering,2019,7(10):9309-9317. DOI: 10.1021/acssuschemeng.9b00357.
[10] MAI W S,CUI Q,ZHANG Z Q,et al. CoMoP/NiFe-layered double-hydroxide hierarchical nanosheet arrays standing on Ni Foam for efficient overall water splitting[J]. ACS Applied Energy Materials,2020,3(8):8075-8085. DOI: 10.1021/acsaem.0c01538.
[11] GONG L,LAN K,WANG X,et al. Carbon-coated Co-Mo-P nanosheets supported on carbon cloth as efficient electrocatalyst for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy,2020,45(1):544-552. DOI: 10.1016/j.ijhydene.2019.10.248.
[12] 方志刚,王智瑶,郑新喜,等. 团簇Co3NiB2极化率、偶极矩及态密度研究[J]. 贵州大学学报(自然科学版),2022,39(1):17-24. DOI: 10.15958/j.cnki.gdxbzrb.2022.01.02.
[13] 吴庭慧,方志刚,朱依文,等. 团簇Co2Mo2P3析氢活性的研究[J]. 重庆师范大学学报(自然科学版),2023,40(6):115-121. DOI: 10.11721/cqnuj20230604.
[14] GANDUBERT A D,LEGENS C,GUILLAUME D,et al. X-ray photoelectron spectroscopy surface quantification of sulfided CoMoP catalysts. Relation between activity and promoted sites. Part II:influence of the sulfidation temperature[J]. Surface and Interface Analysis,2006,38(4):206-209. DOI: 10.1002/sia.2249.
[15] ROMERO-GALARZA A,GUTIÉRREZ-ALEJANDRE A,RAMÍREZ J. Analysis of the promotion of CoMoP/Al2O3 HDS catalysts prepared from a reduced H-P-Mo heteropolyacid Co salt[J]. Journal of Catalysis,2011,280(2):230-238. DOI: 10.1016/j.jcat.2011.03.021.
[16] MA Y Y,WU C X,FENG X J,et al. Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C[J]. Energy & Environmental Science,2017,10(3):788-798. DOI: 10.1039/C6EE03768B.
[17] 吴庭慧,方志刚,王智瑶,等. 团簇Co2Mo2P3结构稳定极化率[J]. 江西师范大学学报(自然科学版),2023,47(2):148-153. DOI: 10.16357/j.cnki.issn1000-5862.2023.02.05.
[18] 李历红,方志刚,赵振宁,等. 团簇Ni3CoP催化析氢活性研究[J]. 广西师范大学学报(自然科学版),2019,37(1):165-172. DOI: 10.16088/j.issn.1001-6600.2019.01.019.
[19] 李历红,方志刚,赵振宁,等. 团簇Ni3CoP电子性质与磁性研究[J]. 江西师范大学学报(自然科学版),2019,43(2):160-166. DOI: 10.16357/j.cnki.issn1000-5862.2019.02.08.
[20] HAY P J. Gaussian basis sets for molecular calculations. The representation 3d orbitals in transition-metal atoms[J]. The Journal of Chemical Physics,1977,66(10):4377-4384.
[21] 方志刚,刘立娥,吴庭慧,等. 基于密度泛函理论对团簇CrPS4的光谱分析[J]. 贵州师范大学学报(自然科学版),2024,42(3):1-8. DOI: 10.16614/j.gznuj.zrb.2024.03.001.
[22] FANG Z G,HU H Z,GUO J X,et al. Quantum chemical study on geometry and property of cluster Ni4P[J]. Chinese Journal of Structural Chemistry,2006,25(1):7-16. DOI: 10.1002/cjoc.200690090.
[23] FUKUI K,YONEZAWA T,SHINGU H. A molecular orbital theory of reactivity in aromatic hydrocarbons[J]. Journal of Chemical Physics,1952,20(4):722-725. DOI: 10.1063/1.1700523.
[24] AIHARA J. Reduced HOMO-LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons[J]. The Journal of Physical Chemistry A,1999,103(37):7487-7495. DOI: 10.1021/jp990092i.
[1] YUAN Lin, FANG Zhigang, LIU Li’e, WEI Daixia, SONG Jingli. Analysis of Electronic Properties of Cluster MnPS3 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 159-165.
[2] LIU Li'e, FANG Zhigang, SONG Jingli, YUAN Lin, WEI Daixia. Thermodynamics and Kinetics of Isomerization Reaction of Two Dimensional CrPS4 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 122-131.
[3] HOU Qianqian, FANG Zhigang, QIN Yu, ZHU Yiwen. Study on the Polarization of Fe4P Clusters [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 140-146.
[4] LI Lihong, FANG Zhigang, ZHAO Zhenning, CHEN Lin, HAN Jianming, CUI Yuandong, MA Tianqi,JIANG Yuchen. Catalytic Properties of Cluster Ni3CoP in the Hydrogen Evolution Reaction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 165-172.
[5] LI Wenbo, FANG Zhigang, ZHAO Zhenning, CHEN Lin, XU Shihao,HAN Jianming, LIU Qi, CUI Yuandong. DFT Study on the Reactive Activity of Cluster Co5B2 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(4): 76-83.
[6] XU Shihao,FANG Zhigang,HAN Jianming,ZHAO Zhenning,CHEN Lin,LIU Qi. Bonding and Magnetic Properties of Cluster V3B2 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 89-96.
[7] ZHANG Chenggang, FANG Zhigang, ZHAO Zhenning, WANG Maoxin,
LIU Jipeng, XU Shihao, HAN Jianming. The Density Functional Theory Study on Stability of Cluster CoFe2B2 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(3): 86-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Wenbo, DONG Qing, LIU Chao, ZHANG Qi. Fine-grained Intent Recognition from Pediatric Medical Dialogues with Contrastive Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 1 -10 .
[2] GAO Shengxiang, YANG Yuanzhang, WANG Linqin, MO Shangbin, YU Zhengtao, DONG Ling. Multi-level Disentangled Personalized Speech Synthesis for Out-of-Domain Speakers Adaptation Scenarios[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 11 -21 .
[3] ZHU Gege, HUANG Anshu, QIN Yingying. Analysis of Development Trend of International Mangrove Research Based on Web of Science[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 1 -12 .
[4] HE Jing, FENG Yuanliu, SHAO Jingwen. Research Progress on Multi-source Data Fusion Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 13 -27 .
[5] ZUO Junyuan, LI Xintong, ZENG Zihan, LIANG Chao, CAI Jinjun. Recent Advances on Metal-Organic Framework-Based Catalysts for Selective Furfural Hydrogenation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 28 -38 .
[6] TAN Quanwei, XUE Guijun, XIE Wenju. Short-Term Heating Load Prediction Model Based on VMD and RDC-Informer[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 39 -51 .
[7] LIU Changping, SONG Shuxiang, JIANG Pinqun, CEN Mingcan. Differential Passive N-path Filter Based on Switched Capacitors[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 52 -60 .
[8] WANG Dangshu, SUN Long, DONG Zhen, JIA Rulin, YANG Likang, WU Jiaju, WANG Xinxia. Parameter Optimization Design of Full-Bridge LLC Resonant Converter under Variable Load[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 61 -71 .
[9] ZHANG Jinzhong, WEI Duqu. Fixed Time Bounded Control of PMSM Chaotic Systems without Initial State Constraints[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 72 -78 .
[10] TU Zhirong, LING Haiying, LI Guo, LU Shenglian, QIAN Tingting, CHEN Ming. Lightweight Passion Fruit Detection Method Based on Improved YOLOv7-Tiny[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 79 -90 .