Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (4): 25-32.doi: 10.16088/j.issn.1001-6600.2022082501

Previous Articles     Next Articles

Research Progress on Molecular Mechanism of Total Flavones of Rhizoma drynariae Regulating Osteoporosis

LIANG Jian1, WU Liang2*, SU Rui1, SONG Quansheng2, CHEN Feihu1   

  1. 1. Guangxi University of Chinese Medicine, Nanning Guangxi 530200, China;
    2. The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning Guangxi 530023, China
  • Received:2022-08-25 Revised:2022-10-13 Online:2023-07-25 Published:2023-09-06

Abstract: Osteoporosis is a systemic metabolic bone disease that can cause reduced bone mass and increase the risk of fracture due to microstructural degradation. At present, western medicine treatment is often accompanied by more serious adverse reactions, which reduce patients’ compliance, thus affecting the treatment effect. Traditional Chinese medicine is characterized by small adverse reactions, multiple ways and multiple targets. Under the guidance of the theory of “the main kidney bone produces marrow”, it is found that Rhizoma drynariae repair has a role in treating osteoporosis.The total flavones of R. drynariae are the main active components of R. drynariae which play an anti-osteoporosis role. With the continuous in-depth study of the pharmacology of traditional Chinese medicine, the total flavones of R. drynariae can regulate the osteogenic proliferation, differentiation and apoptosis of bone cells from multiple links, promote bone formation, increase bone mass, and achieve the role of preventing and treating osteoporosis. The signaling pathways involved include Wnt/β-catenin signaling pathway, MAPK signaling pathway, OPG/RANKL/RANK signaling pathway, BMPs signaling pathway, PI3K/AKT/mTOR signaling pathway, etc. This article summarized the molecular mechanism of the total flavones of R. drynariae and its main active components in the prevention and treatment of osteoporosis in recent years, discussed the exact mechanism of the anti-osteoporosis effect of osteoporotic in vivo, and provided help for the research and development of new anti-osteoporosis drugs.

Key words: Rhizoma drynariae, flavones, active monomer, naringin, naringenin, osteoporosis, molecular mechanisms

CLC Number:  R285
[1] 中华医学会骨质疏松和骨矿盐疾病分会. 原发性骨质疏松症诊疗指南(2017)[J]. 中国骨质疏松杂志,2019, 25(3): 281-309. DOI: 10.3969/j.issn.1006-7108.2019.03.001.
[2] NOH J Y, YANG Y, JUNG H. Molecular mechanisms and emerging therapeutics for osteoporosis[J]. International Journal of Molecular Sciences, 2020, 21(20): 7623. DOI: 10.3390/ijms21207623.
[3] GAO Y G, PATIL S, JIA J X. The development of molecular biology of osteoporosis[J]. International Journal of Molecular Sciences, 2021, 22(15): 8182. DOI: 10.3390/ijms22158182.
[4] JIANG Y H, ZHANG P, ZHANG X, et al. Advances in mesenchymal stem cell transplantation for the treatment of osteoporosis[J]. Cell Proliferation, 2021, 54(1): e12956. DOI: 10.1111/cpr.12956.
[5] 国家药典委员会. 中华人民共和国药典:一部[M]. 北京: 中国医药科技出版社, 2020: 267-268.
[6] 周群, 曾弦, 黄丹, 等. 骨碎补化学成分和生物活性研究进展[J]. 世界科学技术-中医药现代化, 2021, 23(8): 2727-2741. DOI: 10.11842/wst.20210203004.
[7] 谌顺清, 梁伟, 张雪妹, 等. 骨碎补化学成分和药理作用研究进展[J]. 中国中药杂志, 2021, 46(11): 2737-2745. DOI: 10.19540/j.cnki.cjcmm.20210222.602.
[8] 孙景春, 金辉, 杨雯棋, 等. 骨碎补总黄酮对骨质疏松大鼠骨组织中硬化蛋白表达的影响及其作用机制[J]. 吉林大学学报(医学版), 2020, 46(5): 911-916, 1111. DOI: 10.13481/j.1671-587x.20200503.
[9] SUN W P, LI M Y, ZHANG Y, et al. Total flavonoids of rhizoma drynariae ameliorates bone formation and mineralization in BMP-Smad signaling pathway induced large tibial defect rats[J]. Biomedicine & Pharmacotherapy, 2021, 138: 111480. DOI: 10.1016/j.biopha.2021.111480.
[10] STABRAUSKIENE J, KOPUSTINSKIENE D M, LAZAUSKAS R, et al. Naringin and naringenin: their mechanisms of action and the potential anticancer activities[J]. Biomedicines, 2022,10(7): 1686. DOI: 10.3390/biomedicines10071686.
[11] 刘朝晖, 马剑雄, 马信龙. 骨质疏松症的治疗及柚皮苷抗骨质疏松的研究进展[J]. 中国骨质疏松杂志, 2020, 26(4): 615-618, 624. DOI: 10.3969/j.issn.1006-7108.2020.04.029.
[12] 刘小坡, 冯云波, 曹国龙, 等. 柚皮苷对老年大鼠骨质疏松性骨折愈合的影响[J]. 中国临床药理学杂志, 2020, 36(9): 1117-1120. DOI: 10.13699/j.cnki.1001-6821.2020.09.020.
[13] GE X T, ZHOU G. Protective effects of naringin on glucocorticoid-induced osteoporosis through regulating the PI3K/Akt/mTOR signaling pathway[J]. American Journal of Translational Research, 2021, 13(6): 6330-6341.
[14] XU T, WANG L, TAO Y, et al. The function of naringin in inducing secretion of osteoprotegerin and inhibiting formation of osteoclasts[J]. Evidence-Based Complementary and Alternative Medicine, 2016, 2016: 8981650. DOI: 10.1155/2016/8981650.
[15] SALEHI B, FOKOU P V T, SHARIFI-RAD M, et al. The therapeutic potential of naringenin: a review of clinical trials[J]. Pharmaceuticals, 2019,12(1): 11. DOI: 10.3390/ph12010011.
[16] 宋双红, 王德, 莫易易, 等. 柚皮素防治去卵巢致大鼠骨质疏松症的实验研究[J]. 药学学报, 2015, 50(2): 154-161. DOI: 10.16438/j.0513-4870.2015.02.005.
[17] 白书林, 王奕佩, 金珂, 等. SDF-1α/CXCR4信号轴介导柚皮素对骨髓间充质干细胞成骨分化的影响[J]. 上海口腔医学, 2021, 30(6): 579-584. DOI: 10.19439/j.sjos.2021.06.004.
[18] 杨自豪, 赖翔宇, 崔彦. 柚皮素对氧化应激所致大鼠骨质疏松的影响及机制[J]. 基因组学与应用生物学, 2020, 39(7): 3339-3343. DOI: 10.13417/j.gab.039.003339.
[19] 吴新涛, 石晶, 高乐才, 等. 柚皮素对氧化应激所致成骨细胞凋亡的影响及机制研究[J]. 河北医药, 2016, 38(19): 2915-2918. DOI: 10.3969/j.issn.1002-7386.2016.19.008.
[20] 陈雪, 雷霞, 王迪, 等. HPLC法同时测定骨碎补中两种黄酮类化合物含量[J]. 广东化工, 2022, 49(4): 188-190. DOI: 10.3969/j.issn.1007-1865.2022.04.056.
[21] LI L N, ZENG Z, CAI G P. Comparison of neoeriocitrin and naringin on proliferation and osteogenic differentiation in MC3T3-E1[J]. Phytomedicine, 2011, 18: 985-989. DOI: 10.1016/j.phymed.2011.03.002.
[22] 岳春华, 李顺祥. 从骨碎补中制备新北美圣草苷和柚皮苷对照品的研究[J]. 中草药, 2008, 39(4): 529-531. DOI: 10.3321/j.issn:0253-2670.2008.04.016.
[23] 招文华, 沈耿杨, 任辉, 等. 骨碎补活性单体成分调控骨质疏松症相关信号通路的研究进展[J]. 中国骨质疏松杂志, 2017, 23(1): 122-129, 140. DOI: 10.3969/j.issn.1006-7108.2017.01.000.
[24] 张帆, 梁清洋, 韩超, 等. Wnt/β-catenin信号通路调控成骨细胞、破骨细胞在骨质疏松中的作用探讨[J]. 中国骨质疏松杂志, 2021, 27(10): 1540-1544. DOI: 10.3969/j.issn.1006-7108.2021.10.026.
[25] 刘金豹, 冯萍, 李刚. 补肾活血胶囊含药血清基于Wnt/β-catenin信号通路促进骨髓间充质干细胞成骨分化研究[J]. 中华中医药杂志, 2021, 36(6): 3166-3170.
[26] 高飞, 武珈宇, 张燕, 等. Wnt/β-catenin信号通路介导糖基化终未产物对大鼠骨髓间充质干细胞成骨分化的影响[J]. 中华骨质疏松和骨矿盐疾病杂志, 2020, 13(1): 34-40. DOI: 10.3969/j.issn.1674-2591.2020.01.006.
[27] 王军松, 李佳, 刘桂奇. 骨碎补总黄酮对大鼠骨髓间充质干细胞倍增反应和分化的作用机制实验[J]. 解放军医学院学报, 2021, 42(2): 202-206. DOI: 10.3969/j.issn.2095-5227.2021.02.015.
[28] 李琰, 李志航, 陈云刚, 等. 骨碎补水煎液经Wnt/β-catenin通路对去卵巢骨质疏松大鼠骨髓间充质干细胞成脂分化的影响[J]. 中华中医药学刊, 2019, 37(2): 279-284, 518-520. DOI: 10.13193/j.issn.1673-7717.2019.02.004.
[29] 吕建伟, 马信龙, 孙晓雷, 等. 柚皮苷激活Wnt/β-catenin信号通路预防废用性骨质疏松[J]. 中华骨科杂志, 2016, 36(8):503-512. DOI: 10.3760/cma.j.issn.0253-2352.2016.08.006.
[30] GUO M L, LIU F, WANG W J, et al. Naringin promotes osteogenic/odontogenic differentiation of dental pulp stem cells via Wnt/β-catenin[J]. Evidence-Based Complementary and Alternative Medicine, 2022, 2022: 4505471. DOI: 10.1155/2022/4505471.
[31] YANG X F, DONG J J, HAO Y K, et al. Naringin alleviates H2O2-inhibited osteogenic differentiation of human adipose-derived stromal cells via Wnt/β-catenin signaling[J]. Evidence-Based Complementary and Alternative Medicine, 2022, 2022: 3126094. DOI: 10.1155/2022/3126094.
[32] 王敬博, 陈跃平, 章晓云, 等. 淫羊藿苷介导MAPK信号通路防治骨质疏松的研究进展[J]. 中国骨质疏松杂志, 2021, 27(11): 1651-1655. DOI: 10.3969/j.issn.1006-7108.2021.11.018.
[33] 赵金龙, 曾令烽, 梁桂洪, 等. 基于信号通路的中药有效成分治疗骨质疏松机制研究进展[J]. 中草药, 2020, 51(23): 6084-6094. DOI: 10.7501/j.issn.0253-2670.2020.23.023.
[34] LIN Z, XIONG Y, HU Y Q, et al. Polydatin ameliorates osteoporosis via suppression of the mitogen-activated protein kinase signaling pathway[J]. Frontiers in Cell and Developmental Biology, 2021, 9: 730362. DOI: 10.3389/fcell.2021.730362.
[35] 朱晓峰, 王廷春, 张荣华, 等. 骨碎补总黄酮对晚期糖基化终末产物作用下成骨细胞分化及p38和ERK1/2蛋白激酶表达的影响[J]. 中成药, 2012, 34(3): 412-417. DOI: 10.3969/j.issn.1001-1528.2012.03.008.
[36] 张力, 徐勃兴, 李杰, 等. MAPK抑制剂对骨碎补总黄酮促进转基因成肌细胞成骨分化的影响[J]. 中国组织工程研究, 2016, 20(51): 7622-7627. DOI: 10.3969/j.issn.2095-4344.2016.51.003.
[37] 齐鹏飞, 尹文哲, 孙奇峰, 等. 失重下骨碎补总黄酮抑制JNK通路促间充质干细胞增殖的研究[J]. 中医学报, 2016, 31(11): 1742-1745. DOI: 10.16368/j.issn.1674-8999.2016.11.488.
[38] 汪甜, 杨丽, 张荣华. 柚皮苷在促大鼠骨髓间充质干细胞骨向分化过程中对MAPK信号通路的影响[J]. 中国病理生理杂志, 2012, 28(5): 769-776. DOI: 10.3969/j.issn.1000-4718.2012.05.001.
[39] 谢忠建. 从OPG-RANKL-RANK通路到骨质疏松症分子靶向治疗[J]. 中华骨质疏松和骨矿盐疾病杂志, 2022, 15(2): 126-134. DOI: 10.3969/j.issn.1674-2591.2022.02.002.
[40] 高城翰, 刘晓炜, 关雪峰. 补肾法对去卵巢大鼠OPG/RANK/RANKL信号通路影响的Meta分析[J]. 中国实验方剂学杂志, 2021, 27(20): 172-179. DOI: 10.13422/j.cnki.syfjx.20211216.
[41] 吴新涛, 石晶, 高乐才, 等. 柚皮素对破骨细胞特异性基因及OPG/RANKL/RANK表达的影响[J]. 河北医药, 2017, 39(2): 165-167, 172. DOI: 10.3969/j.issn.1002-7386.2017.02.001.
[42] 覃浩然, 宋泉生, 覃海飚, 等. 柚皮苷对兔骨髓基质细胞成骨分化、增殖和迁移及对OPG/RANKL信号通路的调节作用[J]. 西部医学, 2022, 34(1): 51-56. DOI: 10.3969/j.issn.1672-3511.2022.01.010.
[43] LIU M M, LI Y, YANG S T. Effects of naringin on the proliferation and osteogenic differentiation of human amniotic fluid-derived stem cells[J]. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11(1): 276-284. DOI: 10.1002/term.1911.
[44] 曾辉, 赵许兵, 唐成芳, 等. 骨碎补总黄酮对去卵巢大鼠下颌骨结构、血清E2及OPG/RANKL的影响[J]. 西安交通大学学报(医学版), 2019, 40(2): 328-332. DOI: 10.7652/jdyxb201902031.
[45] 张峻玮, 李琰, 薛海鹏, 等. 骨碎补经骨髓间充质干细胞调节OPG/RANKL/RANK通路抑制破骨细胞的实验研究[J]. 中国骨质疏松杂志, 2019, 25(5): 617-624. DOI: 10.3969/j.issn.1006-7108.2019.05.009.
[46] 李树祎, 周苗. 骨形态形成蛋白载体与可控释放系统的研究进展[J]. 生物医学工程学杂志, 2016, 33(4): 812-815. DOI: 10.7507/1001-5515.20160131.
[47] KAMAL A F, SIAHAAN O S H, FIOLIN J. Various dosages of BMP-2 for management of massive bone defect in Sprague Dawley rat[J]. The Archives of Bone and Joint Surgery, 2019, 7(6): 498-505. DOI: 10.22038/ABJS.2018.27916.1723.
[48] 王庆丰, 王孝辉, 张彩丽, 等. 骨碎补总黄酮促进大鼠诱导膜中VEGF、BMP-2表达的实验研究[J]. 药物评价研究, 2018, 41(7): 1220-1223. DOI: 10.7501/j.issn.1674-6376.2018.07.010.
[49] 沈智, 曾景奇, 李益亮, 等. 骨碎补总黄酮对悬尾实验性骨质疏松模型大鼠骨密度及BMP-2mRNA的影响[J]. 中医药导报, 2019, 25(21): 33-36. DOI: 10.13862/j.cnki.cn43-1446/r.2019.21.011.
[50] 翟远坤, 潘亚磊, 牛银波, 等. 柚皮苷及其代谢物柚皮素对乳鼠颅骨成骨细胞分化成熟影响的比较研究[J]. 中国药学杂志, 2013, 48(16): 1373-1379. DOI: 10.11669/cpj.2013.16.010.
[51] HU X, HAN T, BIAN Y D, et al. Knockdown of SLCO4C1 inhibits cell proliferation and metastasis in endometrial cancer through inactivating the PI3K/Akt signaling pathway[J]. Oncology Reports, 2020; 43(3): 919-929. DOI: 10.3892/or.2020.7478.
[52] 陈露华, 唐宏宇. 补骨脂素对绝经后大鼠骨质疏松及PI3K/Akt/mTOR信号通路的影响[J]. 中国药房, 2021, 32(6): 697-701. DOI: 10.6039/j.issn.1001-0408.2021.06.09.
[53] 雷乐, 张玲莉, 杨杰. Notch信号通路在骨髓间充质干细胞及骨代谢疾病中的功能研究进展[J]. 中国骨质疏松杂志, 2020, 26(9): 1364-1369. DOI: 10.3969/j.issn.1006-7108.2020.09.024.
[54] 唐曌隆, 敬伟. 骨髓间充质干细胞分化能力及Notch通路活性的增龄性变化[J]. 上海口腔医学, 2022, 31(2): 120-125. DOI: 10.19439/j.sjos.2022.02.002.
[55] 韩亚力, 罗奕, 曾佳学. 骨碎补总黄酮基于Notch信号通路改善骨质疏松的作用及机制研究[J]. 中国免疫学杂志, 2018, 34(2): 261-266. DOI: 10.3969/j.issn.1000-484X.2018.02.021.
[56] 黄翔宇, 林立垚, 郝敏, 等. 骨碎补总黄酮基于Notch信号通路改善骨质疏松的作用及机制[J]. 中国老年学杂志, 2021, 41(19): 4361-4363. DOI: 10.3969/j.issn.1005-9202.2021.19.062.
[57] YU G Y, ZHENG G Z, CHANG B, et al. Naringin stimulates osteogenic differentiation of rat bone marrow stromal cells via activation of the notch signaling pathway[J]. Stem Cells International, 2016, 2016: 7130653. DOI: 10.1155/2016/7130653.
[58] 黄敏玲, 卢赵琦, 申震, 等. 骨碎补总黄酮干预Notch信号通路影响骨重建过程中成血管-成骨耦联[J]. 中国组织工程研究, 2021, 25(32): 5116-5122.DOI: 10.19439/j.sjos.2022.02.002.
[59] STONE J A, MCCREA J B, WITTER R, et al. Clinical and translational pharmacology of the cathepsin K inhibitor odanacatib studied for osteoporosis[J]. British Journal of Clinical Pharmacology, 2019, 85(6): 1072-1083. DOI: 10.1111/bcp.13869.
[60] DRAKE M T, CLARKE B L, OURSLER M J, et al. Cathepsin K inhibitors for osteoporosis: biology, potential clinical utility, and lessons learned[J]. Endocrine Reviews, 2017, 38(4): 325-350. DOI: 10.1210/er.2015-1114.
[61] 张坛, 钱宇. 原发性骨质疏松症的破骨细胞靶向治疗进展[J]. 中华骨与关节外科杂志, 2018, 11(10): 783-790. DOI: 10.3969/j.issn.2095-9958.2018.10.015.
[62] 史晓林, 李春雯, 孙金谞, 等. 骨碎补总黄酮对去卵巢大鼠组织蛋白酶K的影响[J]. 中华骨质疏松和骨矿盐疾病杂志, 2010, 3(4): 285-290. DOI: 10.3969/j.issn.1674-2591.2010.04.010.
[63] 倪力刚, 刘康, 史晓林. 不同浓度骨碎补总黄酮对模型大鼠的组织蛋白酶K及骨矿含量的影响[J].中国中医骨伤科杂志, 2013, 21(3): 8-10.
[1] LIANG Jie, LIU Xingchen, SUN Zhengyi, CHEN Xiaosi, YANG Chuanchuan, CAO Yupin, LI Yaohua, CHEN Mingwei, HUANG Tuanxin. Antioxidant Activity and Chemical Composition Analysis of Zhuang Medicine Stahlianthus involucratus [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 165-177.
[2] CHEN Yao, LI Meishan, QIN Feng, WANG Hengshan. Research Progress on Chemical Components and Pharmacological Effects of Zanthoxylum nitidum (Roxb.) DC. in Recent Five Years [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 24-37.
[3] LIANG Linpan, LING Xue, FANG Jiao, SU Zhiheng, ZHENG Hua. Mechanism of Rubus suavissmus S. Lee in Intervention of Type 2 Diabetes Mellitus Based on Network Pharmacology and Molecular Docking Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 143-154.
[4] LÜ Jiahua, ZHU Chan, TANG Zongxiang. Formation Mechanism and Biological Significance of Bitterness in Traditional Chinese Medicine [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 324-331.
[5] JIANG Xianghui, TAN Rong, YANG Yongping, XIAO Qingzong. Analysis of Network Pharmacology and Confirmation of Mahonia fortunei (Lindl. ) Fedde and Glycyrrhiza uralensis Fisch Decoction for Hepatitis [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 198-209.
[6] DENG Zhiyong, LUO Haiyu, CHEN Chaoying, DENG Yecheng,SUN Wenbin, LIANG Fangming. Anti-inflammatory and Analgesia Effects of Alcohol Extract from Barks of Shima superba [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 181-186.
[7] NIE Yingtao,PENG Fenglin,LI Shaojie,WANG Ziwei,OU Chan. Effect of Polysaccharides of the Euphoria Longan (Lour.) Steudin Antifatigue by Reducing the Level of Oxygen Free Radicals [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 157-161.
[8] YU Sheng, DUAN Si-liang, LI Hai-ye, HUANG Fu-ping. Effects of Extracts from Aspongopus chinensis Dallas on Cancer Cells [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 104-108.
[9] HUANG Dong, LI Yuelin, BU Kai, HUANG Wen, MO Weibin. Effects of Glycyrrhiza Flavonoids on Lipid Metabolism Enzymeand Expression of ERRα mRNA and Protein of Exhaustive Rats [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 168-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Jiu-cheng, LI Xiao-yan, LI Shuang-qun, ZHANG Ling-jun. Feature Images Retrieval Method of Tolerance Granular-basedMulti-level Texture[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 186 -187 .
[2] BAI Defa, XU Xin, WANG Guochang. Review of Generalized Linear Models and Classification for Functional Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 15 -29 .
[3] ZENG Qingfan, QIN Yongsong, LI Yufang. Empirical Likelihood Inference for a Class of Spatial Panel Data Models[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 30 -42 .
[4] ZHANG Xilong, HAN Meng, CHEN Zhiqiang, WU Hongxin, LI Muhang. Survey of Ensemble Classification Methods for Complex Data Stream[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 1 -21 .
[5] TONG Lingchen, LI Qiang, YUE Pengpeng. Research Progress and Prospects of Karst Soil Organic Carbon Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 22 -34 .
[6] WANG Dangshu, YI Jiaan, DONG Zhen, YANG Yaqiang, DENG Xuan. Research on Bridgeless Boost PFC Converter with Ripple Suppression Unit Based on Single Cycle Control[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 47 -57 .
[7] YU Siting, PENG Jingjing, PENG Zhenyun. Rank Constraint Least Square Symmetric Semidefinite Solutions and Its Optimal Approximation of the Matrix Equation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 136 -144 .
[8] QIN Chengfu, MO Fenmei. Structure ofC3-and C4-Critical Graphs[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 145 -153 .
[9] YIN Yudong, KE Shanzhe, HUANG Jiayan, DENG Mengxiang, LIU Guanyan, CHENG Keguang. One-pot Generation of Allylated Products from Alcohols, Carboxylic Acids and Amines with 1,3-Dibromopropane by Sodium Hydride[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 154 -161 .
[10] DU Libo, LI Jinyu, ZHANG Xiao, LI Yonghong, PAN Weidong. Chemical Constituents and Biological Activity from the Bark of Toona ciliata var. pubescens[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 162 -172 .