Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (4): 189-199.doi: 10.16088/j.issn.1001-6600.2022080108

Previous Articles     Next Articles

LecRKIII.2 Gene Regulates Response of Arabidopsis thaliana to Abiotic Stress and Exogenous Hormones

XIE Daolong1,2#, ZOU Xiaoxiao1,2#, LI Meiling1,2, YOU Changqiao1,2, ZHOU Ping1,2, XIAO Wenjun1,2, GUO Xinhong1,2*   

  1. 1. Chongqing Research Institute, Hunan University, Chongqing 400039, China;
    2. Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation (Hunan University), Changsha Hunan 410082, China
  • Received:2022-08-01 Revised:2022-10-07 Online:2023-07-25 Published:2023-09-06

Abstract: In Arabidopsis thaliana, lectin receptor-like kinases (LecRKs) contain 86 members and are widely involved in plant resistance to biotic and abiotic stresses. AtLecRKIII.2 is a member of the LecRKs family and its specific function has not been reported. Here, three-primer method and real-time quantitative PCR are used to identify homozygous deletion mutants and overexpression plants of AtLecRKIII.2 gene. Analysis of promoter cis-acting elements reveals that AtLecRKIII.2 gene has multiple regulatory elements related to stress, hormone and other responses. Tissue expression pattern analysis shows that AtLecRKIII.2 gene has the highest expression in fruit pods, followed by stems. The analysis of adversity and hormone response patterns shows that AtLecRKIII.2 gene has different degrees of response to exogenous hormones (IAA, BL, GA), PEG8000, high temperature and low temperature. The experimental results of germination rate and root length shows that after treated with NaCl or Mannitol, the seed germination rate of LecRKIII.2-OE is higher than that of the wild type, while lecrkiii.2 is lower than that of the wild type. After treated with auxin, the elongation of LecRKIII.2-OE roots is significantly inhibited and the expression level of auxin-related genes in LecRKIII.2-OE is significantly changed. The above research results indicate that the AtLecRKIII.2 gene may positively regulate the tolerance of Arabidopsis to salt stress and osmotic stress and the growth and development of roots. The above results provide reference data for further research of the physiological function of AtLecRKIII.2 gene in plant abiotic stress and hormone signal transduction.

Key words: Arabidopsis thaliana, lectin receptor-like kinases, AtLecRKIII.2, abiotic stress, hormones

CLC Number:  Q943.3
[1] ZHANG H M, ZHU J H, GONG Z Z, et al. Abiotic stress responses in plants[J]. Nature Reviews Genetics, 2021, 23(2): 104-119. DOI: 10.1038/S41576-021-00413-0.
[2] PANDEY S. Plant receptor-like kinase signaling through heterotrimeric G-proteins[J]. Journal of Experimental Botany, 2020, 71(5): 1742-1751. DOI: 10.1093/jxb/eraa016.
[3] WEI X, WANG Y L, ZHANG S, et al. Structural analysis of receptor-like kinase SOBIR1 reveals mechanisms that regulate its phosphorylation-dependent activation[J]. Plant Communication, 2022, 3(2): 100301. DOI: 10.1016/j.xplc.2022.100301.
[4] WANG Z, GOU X P. The first line of defense: Receptor-like protein kinase-mediated stomatal immunity[J]. International Journal of Molecular Sciences, 2021, 23(1): 343. DOI: 10.3390/ijms23010343.
[5] ZHOU H P, XIAO F, ZHENG Y, et al. PAMP-INDUCED SECRETED PEPTIDE 3 modulates salt tolerance through RECEPTOR-LIKE KINASE 7 in plants[J]. Plant Cell, 2022, 34(2): 927-944. DOI: 10.1093/PLCELL/KOAB292.
[6] ULLRICH A, SCHLESSINGER J. Signal transduction by receptors with tyrosine kinase activity[J]. Cell, 1990, 61(2): 203-212. DOI: 10.1016/0092-8674(90)90801-k.
[7] WALKER J C, ZHANG R. Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica[J]. Nature, 1990, 345(6277): 743-746. DOI: 10.1038/345743a0.
[8] SHIU S H, KARLOWSKI W M, PAN R S, et al. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice[J]. Plant Cell, 2004, 16(5): 1220-1234. DOI: 10.1105/tpc.020834.
[9] VAID N, PANDEY P K, TUTEJA N. Genome-wide analysis of lectin receptor-like kinase family from Arabidopsis and rice[J]. Plant Molecular Biology, 2012, 80(4/5): 365-388. DOI: 10.1007/s11103-012-9952-8.
[10] 林彦萍, 王义, 蒋世翠, 等. 植物类受体蛋白激酶研究进展[J]. 基因组学与应用生物学, 2015, 34(2): 429-437. DOI: 10.13417/j.gab.034.000429.
[11] GUO L, QI Y T, MU Y, et al. Potato StLecRK-IV.1 negatively regulates late blight resistance by affecting the stability of a positive regulator StTET8[J]. Horticulture Research, 2022, 9: UHAC010. DOI: 10.1093/hr/uhac010.
[12] KACHROO A, NASRALLAH M E, NASRALLAH J B. Self-incompatibility in the Brassicaceae: receptor-ligand signaling and cell to cell communication[J]. Plant Cell, 2002, 14(sup): S227-S238. DOI: 10.1105/tpc.010440.
[13] WANG H C, CHEVALIER D, LARUE C, et al. The protein phosphatases and protein kinases of Arabidopsis thaliana[J]. The Arabidopsis Book, 2007, 5: e0106. DOI: 10.1199/tab.0106.
[14] GUO J B, DUAN H, XUAN L, et al. Identification and functional analysis of LecRLK genes in Taxodium ‘Zhongshanshan’[J]. PeerJ, 2019, 7: e7498. DOI: 10.7717/PEERJ.7498.
[15] DESCLOS-THEVENIAU M, ARNAUD D, HUANG T Y, et al. The Arabidopsis lectin receptor kinase LecRK-V.5 represses stomatal immunity induced by Pseudomonas syringae pv. tomato DC3000[J]. PLoS Pathog, 2012, 8(2): e1002513. DOI: 10.1371/journal.ppat.1002513.
[16] KANZAKI H, SAITOH H, TAKAHASHI Y, et al. NbLRK1, a lectin-like receptor kinase protein of Nicotiana benthamiana, interacts with Phytophthora infestans INF1 elicitin and mediates INF1-induced cell death[J]. Planta, 2008, 228(6): 977-987. DOI: 10.1007/s00425-008-0797-y.
[17] HWANG I S, HWANG B K. The pepper mannose-binding lectin gene CaMBL1 is required to regulate cell death and defense responses to microbial pathogens[J]. Plant Physiology, 2011, 155(1): 447-463. DOI: 10.1104/pp.110.164848.
[18] PASSRICHA N, SAIFI S K, KHARB P, et al. Marker-free transgenic rice plant overexpressing pea LecRLK imparts salinity tolerance by inhibiting sodium accumulation[J]. Plant Molecular Biology, 2019, 99(3): 265-281. DOI: 10.1007/S11103-018-0816-8.
[19] SUN X L, YU Q Y, TANG L L, et al. GsSRK, a G-type lectin S-receptor-like serine/threonine protein kinase, is a positive regulator of plant tolerance to salt stress[J]. Journal of Plant Physiology, 2013, 170(5): 505-515. DOI: 10.1016/j.jplph.2012.11.017.
[20] JOSHI A, DANG H Q, VAID N, et al. Pea lectin receptor-like kinase promotes high salinity stress tolerance in bacteria and expresses in response to stress in planta[J]. Glycoconjugate Journal, 2010, 27(1): 133-150. DOI: 10.1007/s10719-009-9265-6.
[21] RIOU C, HERVÉ C, PACQUIT V, et a1. Expression of an Arabidopsis lectin kinase receptor gene, lecRK-a1, is induced during senescence, wounding and in response to oligogalacturonic acids[J]. Plant Physiology and Biochemistry, 2002, 40(5): 431-438. DOI: 10.1016/S0981-9428(02)01390-6.
[22] DENG K Q, WANG Q M, ZENG J X, et al. A lectin receptor kinase positively regulates ABA response during seed germination and is involved in salt and osmotic stress response[J]. Journal of Plant Physiology, 2009, 52(6): 493-500. DOI: 10.1007/s12374-009-9063-5.
[23] XIN Z Y, WANG A Y, YANG G H, et al. The Arabidopsis A4 subfamily of lectin receptor kinases negatively regulates abscisic acid response in seed germination[J]. Plant Physiology, 2009, 149(1): 434-444. DOI: 10.1104/pp.108.130583.
[24] HE X J, ZHANG Z G, YAN D Q, et al. A salt-responsive receptor-like kinase gene regulated by the ethylene signaling pathway encodes a plasma membrane serine/threonine kinase[J]. Theoretical and Applied Genetics, 2004, 109(2): 377-383. DOI: 10.1007/s00122-004-1641-9.
[25] BONAVENTURE G. The Nicotiana attenuata LECTIN RECEPTOR KINASE 1 is involved in the perception of insect feeding[J]. Plant Signaling & Behavior, 2011, 6(12): 2060-2063. DOI: 10.4161/psb.6.12.18324.
[26] WAN J R, PATEL A, MATHIEU M, et al. A lectin receptor-like kinase is required for pollen development in Arabidopsis[J]. Plant Molecular Biology, 2008, 67(5): 469-482. DOI: 10.1007/s11103-008-9332-6.
[27] ZUO K J, ZHAO J Y, WANG J, et al. Molecular cloning and characterization of GhlecRK, a novel kinase gene with lectin-like domain from Gossypium hirsutum[J]. DNA Sequence, 2004, 15(1): 58-65. DOI: 10.1080/1042517042000191454.
[28] 陆秀涛. 拟南芥凝集素类受体激酶基因LecRKIII.1和LecRKIII.2的作用机制研究[D]. 长沙: 湖南大学, 2016: 1-72.
[29] XIAO W J, HU S, ZOU X X, et al. Lectin receptor-like kinase LecRK-VIII.2 is a missing link in MAPK siganling-mediated yield control[J]. Plant Physiology, 2021, 187(1): 303-320. DOI: 10.1093/plphys/kiab241.
[30] CHEN X X, DING Y L, YANG Y Q, et al. Protein kinases in plant responses to drought, salt, and cold stress[J]. Journal of Integrative Plant Biology, 2021, 63(1): 53-78. DOI: 10.1111/jipb.13061.
[31] SUN Y L, QIAO Z Z, MUCHERO W, et al. Lectin receptor-like kinases: the sensor and mediator at the plant cell surface[J]. Frontiers in Plant Science, 2020, 11:596301. DOI: 10.3389/fpls.2020.596301.
[32] LI L, LI K, ALI A, et al. AtWAKL10, a cell wall associated receptor-like kinase, negatively regulates leaf senescence in Arabidopsis thaliana[J]. International Journal of Molecular Sciences, 2021, 22(9): 4885. DOI: 10.3390/ijms22094885.
[33] AZEVEDO H, SILVA-CORREIA J, OLIVEIRA J, et al. A strategy for the identification of new abiotic stress determinants in Arabidopsis using web-based data mining and reverse genetics[J]. Omics, 2011, 15(12): 935-947. DOI: 10.1089/omi.2011.0083.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Jiu-cheng, LI Xiao-yan, LI Shuang-qun, ZHANG Ling-jun. Feature Images Retrieval Method of Tolerance Granular-basedMulti-level Texture[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 186 -187 .
[2] BAI Defa, XU Xin, WANG Guochang. Review of Generalized Linear Models and Classification for Functional Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 15 -29 .
[3] ZENG Qingfan, QIN Yongsong, LI Yufang. Empirical Likelihood Inference for a Class of Spatial Panel Data Models[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 30 -42 .
[4] ZHANG Xilong, HAN Meng, CHEN Zhiqiang, WU Hongxin, LI Muhang. Survey of Ensemble Classification Methods for Complex Data Stream[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 1 -21 .
[5] TONG Lingchen, LI Qiang, YUE Pengpeng. Research Progress and Prospects of Karst Soil Organic Carbon Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 22 -34 .
[6] WANG Dangshu, YI Jiaan, DONG Zhen, YANG Yaqiang, DENG Xuan. Research on Bridgeless Boost PFC Converter with Ripple Suppression Unit Based on Single Cycle Control[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 47 -57 .
[7] YU Siting, PENG Jingjing, PENG Zhenyun. Rank Constraint Least Square Symmetric Semidefinite Solutions and Its Optimal Approximation of the Matrix Equation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 136 -144 .
[8] QIN Chengfu, MO Fenmei. Structure ofC3-and C4-Critical Graphs[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 145 -153 .
[9] YIN Yudong, KE Shanzhe, HUANG Jiayan, DENG Mengxiang, LIU Guanyan, CHENG Keguang. One-pot Generation of Allylated Products from Alcohols, Carboxylic Acids and Amines with 1,3-Dibromopropane by Sodium Hydride[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 154 -161 .
[10] DU Libo, LI Jinyu, ZHANG Xiao, LI Yonghong, PAN Weidong. Chemical Constituents and Biological Activity from the Bark of Toona ciliata var. pubescens[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 162 -172 .