广西师范大学学报(自然科学版) ›› 2026, Vol. 44 ›› Issue (1): 80-90.doi: 10.16088/j.issn.1001-6600.2024122103

• 智能信息处理 • 上一篇    下一篇

融合情感知识的虚假新闻检测

黄琪, 李必镡, 王明文*, 肖聪, 刘璟, 罗文兵   

  1. 江西师范大学 计算机信息工程学院, 江西 南昌 330022
  • 收稿日期:2024-12-21 修回日期:2025-03-26 出版日期:2026-01-05 发布日期:2026-01-26
  • 通讯作者: 王明文(1965—), 男, 江西南康人, 江西师范大学教授, 博士。E-mail: mwwang@jxnu.edu.cn
  • 基金资助:
    国家自然科学基金(62466028, 62266023); 江西省自然科学基金(20242BAB20045); 江西省教育厅科学技术研究项目(GJJ2200354)

Fake News Detection with Integrated Emotional Knowledge

HUANG Qi, LI Bixin, WANG Mingwen*, XIAO Cong, LIU Jing, LOU Wenbing   

  1. School of Computer and Information Engineering, Jiangxi Normal University, Nanchang Jiangxi 330022, China
  • Received:2024-12-21 Revised:2025-03-26 Online:2026-01-05 Published:2026-01-26

摘要: 情感在虚假新闻检测中起着重要作用。现有工作侧重于从语言学角度挖掘情感特征,忽视了从心理学角度挖掘情感特征,导致不能挖掘情感之间的关联信息;此外,现有工作忽略了情感特征与文本特征之间的联系,导致不能充分挖掘新闻潜在语义关系。为解决上述问题,本文提出一种融合心理学情感知识的虚假新闻检测模型(FNEK),旨在将Plutchik情感轮心理学模型引入虚假新闻检测领域,利用其提取情感特征,同时通过局部和全局视角提取文本特征,并与情感特征融合进行虚假新闻检测,以提高虚假新闻检测模型的准确性和可靠性。在公开的 Politifact、Weibo16和Weibo20数据集上的实验结果表明,本文模型与当前先进模型相比,在准确率上分别提高2.1、0.7和2.5个百分点。

关键词: 虚假新闻检测, 语言学, 心理学, 情感知识, Plutchik情感轮

Abstract: Emotion plays a significant role in fake news detection. Existing research mainly focuses on extracting emotional features from a linguistic perspective, which fails to explore the relationships between emotions from a psychological perspective.In addition, the connection between sentiment features and text features is ignored by existing work, and the potential semantic information of news can not be explored fully. To address the above issues, a fake news detection mode(FNEK) is proposed by this paper, which integrates psychological and emotional knowledge. The Plutchik’s wheel of emotions theory from psychology is incorporated by the model to extract emotional features, and the emotional features are combined with textual features from local and global perspectives, which enhances the accuracy and reliability of fake news detection.Experimental results on publicly available Politifact, Weibo16, and Weibo20 datasets show that the proposed model improves accuracy by 2.1, 0.7 and 2.5 percentage points, respectively, compared with state-of-the-art baseline models.

Key words: fake news detection, linguistic perspective, psychological perspective, emotional knowledge, Plutchik’s wheel of emotions

中图分类号:  TP391.1

[1] 钱胜胜, 张天柱, 徐常胜. 多媒体社会事件分析综述[J]. 计算机科学, 2021, 48(3): 97-112. DOI: 10.11896/jsjkx.210200023.
[2] VOSOUGHI S, ROY D, ARAL S. The spread of true and false news online[J]. Science, 2018, 359(6380): 1146-1151. DOI: 10.1126/science.aap9559.
[3] KARIMI H, TANG J. Learning hierarchical discourse-level structure for fake news detection[EB/OL]. (2019-03-19)[2024-12-21]. https://arxiv.org/pdf/1903.07389. DOI: 10.48550/arXiv.1903.07389.
[4] 刘华玲, 陈尚辉, 曹世杰, 等. 基于多模态学习的虚假新闻检测研究[J]. 计算机科学与探索, 2023, 17(9): 2015-2029. DOI: 10.3778/j.issn.1673-9418.2301064.
[5] MIN E X, RONG Y, BIAN Y T, et al. Divide-and-conquer: post-user interaction network for fake news detection on social media[C]//WWW’22: The ACM Web Conference 2022. New York, NY: Association for Computing Machinery, 2022: 1148-1158. DOI: 10.1145/3485447.3512163.
[6] FAN Y. Rumour detection and analysis on Twitter[EB/OL]. (2023-04-04)[2024-12-21]. https://arxiv.org/abs/2304.01712. DOI: 10.48550/arXiv.2304.01712.
[7] WU L, RAO Y. Adaptive interaction fusion networks for fake news detection[EB/OL]. (2020-04-21)[2024-12-21]. https://arxiv.org/pdf/2004.10009. DOI: 10.48550/arXiv.2004.10009.
[8] ZHANG X Y, CAO J, LI X R, et al. Mining dual emotion for fake news detection[C]//WWW’21: The Web Conference 2021. New York, NY: Association for Computing Machinery, 2021: 3465-3476. DOI: 10.1145/3442381.3450004.
[9] 葛晓义, 张明书, 魏彬, 等. 基于双重情感感知的可解释谣言检测[J]. 中文信息学报, 2022, 36(9): 129-138. DOI: 10.3969/j.issn.1003-0077.2022.09.014.
[10] 曾雪强, 华鑫, 刘平生, 等. 基于情感轮和情感词典的文本情感分布标记增强方法[J]. 计算机学报, 2021, 44(6): 1080-1094. DOI: 10.11897/SP.J.1016.2021.01080.
[11] AÏMEUR E, AMRI S, BRASSARD G. Fake news, disinformation and misinformation in social media: a review[J]. Social Network Analysis and Mining, 2023, 13(1): 30. DOI: 10.1007/s13278-023-01028-5.
[12] CASTILLO C, MENDOZA M, POBLETE B. Information credibility on twitter[C]//WWW’11: 20th International World Wide Web Conference. New York, NY: Association for Computing Machinery, 2011: 675-684.DOI: 10.1145/1963405.1963500.
[13] HORNE B, ADALI S. This just in: fake news packs a lot in title, uses simpler, repetitive content in text body, more similar to satire than real news[J]. Proceedings of the International AAAI Conference on Web and Social Media, 2017, 11(1): 759-766. DOI: 10.1609/icwsm.v11i1.14976.
[14] ISHLACH K, BEN-DAVID I, FIRE M, et al. A novel method for news article event-based embedding[EB/OL]. (2024-05-20)[2024-12-21]. https://arxiv.org/abs/2405.13071. DOI: 10.48550/arXiv.2405.13071.
[15] NAN Q, SHENG Q, CAO J, et al. Exploiting user comments for early detection of fake news prior to users’ commenting[EB/OL]. (2023-10-16)[2024-12-21]. https://arxiv.org/pdf/2310.10429. DOI: 10.48550/arXiv.2310.10429.
[16] ELFAIK H, NFAOUI E H. Automatic detection of fake news using gated recurrent unit deep model[J]. Procedia Computer Science, 2024, 233: 474-480. DOI: 10.1016/j.procs.2024.03.237.
[17] 刘政, 卫志华, 张韧弦. 基于卷积神经网络的谣言检测[J]. 计算机应用, 2017, 37(11): 3053-3056, 3100. DOI: 10.11772/j.issn.1001-9081.2017.11.3053
[18] 韩晓鸿, 赵梦凡, 张钰涛. 联合异质图卷积网络和注意力机制的假新闻检测[J]. 小型微型计算机系统, 2024, 45(2): 301-308. DOI: 10.20009/j.cnki.21-1106/TP.2022-0412.
[19] 欧阳祺, 陈鸿昶, 刘树新, 等. 基于Bert-GNNs异质图注意力网络的早期谣言检测[J]. 电子学报, 2024, 52(1): 311-323. DOI: 10.12263/DZXB.20220882.
[20] 毛二松, 陈刚,刘欣, 等. 基于深层特征和集成分类器的微博谣言检测研究[J]. 计算机应用研究, 2016, 33(11): 3369-3373. DOI: 10.3969/j.issn.1001-3695.2016.11.037.
[21] 刘赏, 沈逸凡. 基于新闻标题-正文差异性的虚假新闻检测方法[J]. 数据分析与知识发现, 2023, 7(2): 97-107. DOI: 10.11925/infotech.2096-3467.2022.0293.
[22] CUI L M, WANG S H, LEE D. SAME: sentiment-aware multimodal embedding for detecting fake news[C]//ASONAM’19: International Conference on Advances in Social Networks Analysis and Mining. New York, NY: Association for Computing Machinery, 2019: 41-48. DOI: 10.1145/3341161.3342894.
[23] BIAN T, XIAO X, XU T Y, et al. Rumor detection on social media with bi-directional graph convolutional networks[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1): 549-556. DOI: 10.1609/aaai.v34i01.5393.
[24] 徐建民, 孙朋, 吴树芳. 传播路径树核学习的微博谣言检测方法[J]. 计算机科学, 2022, 49(6): 342-349. DOI: 10.11896/jsjkx.210400096.
[25] HU L M, YANG T C, ZHANG L H, et al. Compare to the knowledge: graph neural fake news detection with external knowledge[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2021: 754-763. DOI: 10.18653/v1/2021.acl-long.62.
[26] 郭秋实, 李晨曦, 刘金硕. 引入知识表示的图卷积网络谣言检测方法[J]. 计算机应用研究, 2022, 39(7): 2032-2036. DOI: 10.19734/j.issn.1001-3695.2022.01.0003.
[27] 周昊玮, 刘勇, 玄萍. 基于预训练和多模态融合的假新闻检测[J]. 计算机工程, 2024, 50(1): 289-295. DOI: 10.19678/j.issn.1000-3428.0066412.
[28] WU Y, ZHAN P W, ZHANG Y J, et al. Multimodal fusion with co-attention networks for fake news detection[C]//Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg, PA: Association for Computational Linguistics, 2021: 2560-2569. DOI: 10.18653/v1/2021.findings-acl.226.
[29] AJAO O, BHOWMIK D, ZARGARI S. Sentiment aware fake news detection on online social networks[C]//ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway, NJ: IEEE, 2019: 2507-2511. DOI: 10.1109/ICASSP.2019.8683170.
[30] GIACHANOU A, ROSSO P,CRESTANI F. Leveraging emotional signals for credibility detection[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research And Development in Information Retrieval. New York, NY: Association for Computing Machinery, 2019: 877-880. DOI: 10.1145/3331184.3331285.
[31] PLUTCHIK R. A general psychoevolutionary theory of emotion[M]//Theories of Emotion. New York: Academic Press, 1980: 3-33. DOI: 10.1016/B978-0-12-558701-3.50007-7.
[32] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. (2018-10-11)[2024-12-21]. https://arxiv.org/abs/1810.04805. DOI: 10.48550/arXiv.1810.04805.
[33] MA J, GAO W, MITRA P, et al. Detecting rumors from microblogs with recurrent neural networks[C]//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16). Menlo Park, CA: AAAI Press, 2016: 3818-3824.
[34] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Stroudsburg, PA: Association for Computational Linguistics, 2014: 1746-1751. DOI: 10.3115/v1/D14-1181.
[35] NAN Q, CAO J, ZHU Y C, et al. MDFEND: multi-domain fake news detection[C]//CIKM’21: The 30th ACM International Conference on Information and Knowledge Management. New York, NY: Association for Computing Machinery, 2021: 3343-3347. DOI: 10.1145/3459637.3482139.
[36] NAN Q, SHENG Q, CAO J, et al. Let silence speak: enhancing fake news detection with generated commentsfrom large language models[C]//CIKM’24: The 33rd ACM International Conference on Information and Knowledge Management. New York, NY: Association for Computing Machinery, 2024: 1732-1742. DOI: 10.1145/3627673.367951.
[1] 施子豪, 蒙祖强, 谈超洪. 基于注意力机制和多尺度融合的多模态虚假新闻检测模型[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 68-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘晓娟, 林璐, 胡郁葱, 潘雷. 站点周边用地类型对地铁乘车满意度影响研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 1 -12 .
[2] 韩华彬, 高丙朋, 蔡鑫, 孙凯. 基于HO-CNN-BiLSTM-Transformer模型的风机叶片结冰故障诊断[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 13 -28 .
[3] 陈建国, 梁恩华, 宋学伟, 覃章荣. 基于OCT图像三维重建的人眼房水动力学LBM模拟[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 29 -41 .
[4] 李好, 何冰. 凹槽结构表面液滴弹跳行为研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 42 -53 .
[5] 田晟, 赵凯龙, 苗佳霖. 基于改进YOLO11n模型的自动驾驶道路交通检测算法研究[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 1 -9 .
[6] 黄艳国, 肖洁, 吴水清. 基于D2STGNN的双向高效多尺度交通流预测[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 10 -22 .
[7] 刘志豪, 李自立, 苏珉. 智能通信与无人机结合的YOLOv8电动车骑行者头盔佩戴检测方法[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 23 -32 .
[8] 张竹露, 李华强, 刘洋, 许立雄. 基于Bi-LSTM特征融合和FT-FSL的非侵入式负荷辨识[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 33 -44 .
[9] 王涛, 黎远松, 石睿, 陈慧宁, 侯宪庆. MGDE-UNet:轻量化光伏电池缺陷分割模型[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 45 -55 .
[10] 黄文杰, 罗维平, 陈镇南, 彭志祥, 丁梓豪. 基于YOLO11的轻量化PCB缺陷检测算法研究[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 56 -67 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发