|
|
广西师范大学学报(自然科学版) ›› 2026, Vol. 44 ›› Issue (1): 80-90.doi: 10.16088/j.issn.1001-6600.2024122103
黄琪, 李必镡, 王明文*, 肖聪, 刘璟, 罗文兵
HUANG Qi, LI Bixin, WANG Mingwen*, XIAO Cong, LIU Jing, LOU Wenbing
摘要: 情感在虚假新闻检测中起着重要作用。现有工作侧重于从语言学角度挖掘情感特征,忽视了从心理学角度挖掘情感特征,导致不能挖掘情感之间的关联信息;此外,现有工作忽略了情感特征与文本特征之间的联系,导致不能充分挖掘新闻潜在语义关系。为解决上述问题,本文提出一种融合心理学情感知识的虚假新闻检测模型(FNEK),旨在将Plutchik情感轮心理学模型引入虚假新闻检测领域,利用其提取情感特征,同时通过局部和全局视角提取文本特征,并与情感特征融合进行虚假新闻检测,以提高虚假新闻检测模型的准确性和可靠性。在公开的 Politifact、Weibo16和Weibo20数据集上的实验结果表明,本文模型与当前先进模型相比,在准确率上分别提高2.1、0.7和2.5个百分点。
中图分类号: TP391.1
| [1] 钱胜胜, 张天柱, 徐常胜. 多媒体社会事件分析综述[J]. 计算机科学, 2021, 48(3): 97-112. DOI: 10.11896/jsjkx.210200023. [2] VOSOUGHI S, ROY D, ARAL S. The spread of true and false news online[J]. Science, 2018, 359(6380): 1146-1151. DOI: 10.1126/science.aap9559. [3] KARIMI H, TANG J. Learning hierarchical discourse-level structure for fake news detection[EB/OL]. (2019-03-19)[2024-12-21]. https://arxiv.org/pdf/1903.07389. DOI: 10.48550/arXiv.1903.07389. [4] 刘华玲, 陈尚辉, 曹世杰, 等. 基于多模态学习的虚假新闻检测研究[J]. 计算机科学与探索, 2023, 17(9): 2015-2029. DOI: 10.3778/j.issn.1673-9418.2301064. [5] MIN E X, RONG Y, BIAN Y T, et al. Divide-and-conquer: post-user interaction network for fake news detection on social media[C]//WWW’22: The ACM Web Conference 2022. New York, NY: Association for Computing Machinery, 2022: 1148-1158. DOI: 10.1145/3485447.3512163. [6] FAN Y. Rumour detection and analysis on Twitter[EB/OL]. (2023-04-04)[2024-12-21]. https://arxiv.org/abs/2304.01712. DOI: 10.48550/arXiv.2304.01712. [7] WU L, RAO Y. Adaptive interaction fusion networks for fake news detection[EB/OL]. (2020-04-21)[2024-12-21]. https://arxiv.org/pdf/2004.10009. DOI: 10.48550/arXiv.2004.10009. [8] ZHANG X Y, CAO J, LI X R, et al. Mining dual emotion for fake news detection[C]//WWW’21: The Web Conference 2021. New York, NY: Association for Computing Machinery, 2021: 3465-3476. DOI: 10.1145/3442381.3450004. [9] 葛晓义, 张明书, 魏彬, 等. 基于双重情感感知的可解释谣言检测[J]. 中文信息学报, 2022, 36(9): 129-138. DOI: 10.3969/j.issn.1003-0077.2022.09.014. [10] 曾雪强, 华鑫, 刘平生, 等. 基于情感轮和情感词典的文本情感分布标记增强方法[J]. 计算机学报, 2021, 44(6): 1080-1094. DOI: 10.11897/SP.J.1016.2021.01080. [11] AÏMEUR E, AMRI S, BRASSARD G. Fake news, disinformation and misinformation in social media: a review[J]. Social Network Analysis and Mining, 2023, 13(1): 30. DOI: 10.1007/s13278-023-01028-5. [12] CASTILLO C, MENDOZA M, POBLETE B. Information credibility on twitter[C]//WWW’11: 20th International World Wide Web Conference. New York, NY: Association for Computing Machinery, 2011: 675-684.DOI: 10.1145/1963405.1963500. [13] HORNE B, ADALI S. This just in: fake news packs a lot in title, uses simpler, repetitive content in text body, more similar to satire than real news[J]. Proceedings of the International AAAI Conference on Web and Social Media, 2017, 11(1): 759-766. DOI: 10.1609/icwsm.v11i1.14976. [14] ISHLACH K, BEN-DAVID I, FIRE M, et al. A novel method for news article event-based embedding[EB/OL]. (2024-05-20)[2024-12-21]. https://arxiv.org/abs/2405.13071. DOI: 10.48550/arXiv.2405.13071. [15] NAN Q, SHENG Q, CAO J, et al. Exploiting user comments for early detection of fake news prior to users’ commenting[EB/OL]. (2023-10-16)[2024-12-21]. https://arxiv.org/pdf/2310.10429. DOI: 10.48550/arXiv.2310.10429. [16] ELFAIK H, NFAOUI E H. Automatic detection of fake news using gated recurrent unit deep model[J]. Procedia Computer Science, 2024, 233: 474-480. DOI: 10.1016/j.procs.2024.03.237. [17] 刘政, 卫志华, 张韧弦. 基于卷积神经网络的谣言检测[J]. 计算机应用, 2017, 37(11): 3053-3056, 3100. DOI: 10.11772/j.issn.1001-9081.2017.11.3053 [18] 韩晓鸿, 赵梦凡, 张钰涛. 联合异质图卷积网络和注意力机制的假新闻检测[J]. 小型微型计算机系统, 2024, 45(2): 301-308. DOI: 10.20009/j.cnki.21-1106/TP.2022-0412. [19] 欧阳祺, 陈鸿昶, 刘树新, 等. 基于Bert-GNNs异质图注意力网络的早期谣言检测[J]. 电子学报, 2024, 52(1): 311-323. DOI: 10.12263/DZXB.20220882. [20] 毛二松, 陈刚,刘欣, 等. 基于深层特征和集成分类器的微博谣言检测研究[J]. 计算机应用研究, 2016, 33(11): 3369-3373. DOI: 10.3969/j.issn.1001-3695.2016.11.037. [21] 刘赏, 沈逸凡. 基于新闻标题-正文差异性的虚假新闻检测方法[J]. 数据分析与知识发现, 2023, 7(2): 97-107. DOI: 10.11925/infotech.2096-3467.2022.0293. [22] CUI L M, WANG S H, LEE D. SAME: sentiment-aware multimodal embedding for detecting fake news[C]//ASONAM’19: International Conference on Advances in Social Networks Analysis and Mining. New York, NY: Association for Computing Machinery, 2019: 41-48. DOI: 10.1145/3341161.3342894. [23] BIAN T, XIAO X, XU T Y, et al. Rumor detection on social media with bi-directional graph convolutional networks[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1): 549-556. DOI: 10.1609/aaai.v34i01.5393. [24] 徐建民, 孙朋, 吴树芳. 传播路径树核学习的微博谣言检测方法[J]. 计算机科学, 2022, 49(6): 342-349. DOI: 10.11896/jsjkx.210400096. [25] HU L M, YANG T C, ZHANG L H, et al. Compare to the knowledge: graph neural fake news detection with external knowledge[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2021: 754-763. DOI: 10.18653/v1/2021.acl-long.62. [26] 郭秋实, 李晨曦, 刘金硕. 引入知识表示的图卷积网络谣言检测方法[J]. 计算机应用研究, 2022, 39(7): 2032-2036. DOI: 10.19734/j.issn.1001-3695.2022.01.0003. [27] 周昊玮, 刘勇, 玄萍. 基于预训练和多模态融合的假新闻检测[J]. 计算机工程, 2024, 50(1): 289-295. DOI: 10.19678/j.issn.1000-3428.0066412. [28] WU Y, ZHAN P W, ZHANG Y J, et al. Multimodal fusion with co-attention networks for fake news detection[C]//Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg, PA: Association for Computational Linguistics, 2021: 2560-2569. DOI: 10.18653/v1/2021.findings-acl.226. [29] AJAO O, BHOWMIK D, ZARGARI S. Sentiment aware fake news detection on online social networks[C]//ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway, NJ: IEEE, 2019: 2507-2511. DOI: 10.1109/ICASSP.2019.8683170. [30] GIACHANOU A, ROSSO P,CRESTANI F. Leveraging emotional signals for credibility detection[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research And Development in Information Retrieval. New York, NY: Association for Computing Machinery, 2019: 877-880. DOI: 10.1145/3331184.3331285. [31] PLUTCHIK R. A general psychoevolutionary theory of emotion[M]//Theories of Emotion. New York: Academic Press, 1980: 3-33. DOI: 10.1016/B978-0-12-558701-3.50007-7. [32] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. (2018-10-11)[2024-12-21]. https://arxiv.org/abs/1810.04805. DOI: 10.48550/arXiv.1810.04805. [33] MA J, GAO W, MITRA P, et al. Detecting rumors from microblogs with recurrent neural networks[C]//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16). Menlo Park, CA: AAAI Press, 2016: 3818-3824. [34] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Stroudsburg, PA: Association for Computational Linguistics, 2014: 1746-1751. DOI: 10.3115/v1/D14-1181. [35] NAN Q, CAO J, ZHU Y C, et al. MDFEND: multi-domain fake news detection[C]//CIKM’21: The 30th ACM International Conference on Information and Knowledge Management. New York, NY: Association for Computing Machinery, 2021: 3343-3347. DOI: 10.1145/3459637.3482139. [36] NAN Q, SHENG Q, CAO J, et al. Let silence speak: enhancing fake news detection with generated commentsfrom large language models[C]//CIKM’24: The 33rd ACM International Conference on Information and Knowledge Management. New York, NY: Association for Computing Machinery, 2024: 1732-1742. DOI: 10.1145/3627673.367951. |
| [1] | 施子豪, 蒙祖强, 谈超洪. 基于注意力机制和多尺度融合的多模态虚假新闻检测模型[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 68-79. |
|
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |