广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (4): 213-223.doi: 10.16088/j.issn.1001-6600.2024110104

• 生态环境科学研究 • 上一篇    下一篇

杉木ClHSP70基因的克隆及表达模式分析

郭胜周1,2,3, 许祖元1,2,3, 刘荣林1,2,3, 林秦民4, 曹光球1,2,3, 曹世江1,2,3*   

  1. 1.福建农林大学 林学院, 福建 福州 350002;
    2.国家林业和草原局杉木工程技术研究中心(福建农林大学), 福建 福州 350002;
    3.林木逆境生理生态及分子生物学福建省高校重点实验室(福建农林大学), 福建 福州 350002;
    4.福建农林大学 生命科学学院, 福建 福州 350002
  • 收稿日期:2024-11-01 修回日期:2024-12-02 出版日期:2025-07-05 发布日期:2025-07-14
  • 通讯作者: 曹世江(1984—),男,吉林长春人,福建农林大学副教授,博士。E-mail: csjiang1123@126.com
  • 基金资助:
    “十四五”国家重点研发计划项目(2021YFD2201302)

Cloning and Expression Pattern Analysis of ClHSP70 Gene in Chinese fir

GUO Shengzhou1,2,3, XU Zuyuan1,2,3, LIU Ronglin1,2,3, LIN Qinmin4, CAO Guangqiu1,2,3, CAO Shijiang1,2,3*   

  1. 1. College of Forestry, Fujian Agriculture and Forestry University, Fuzhou Fujian 350002, China;
    2. Chinese Fir Engineering Research Center of National Forestry and Grassland Administration (Fujian Agriculture and Forestry University), Fuzhou Fujian 350002, China;
    3. University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province (Fujian Agriculture and Forestry University), Fuzhou Fujian 350002, China;
    4. College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou Fujian 350002, China
  • Received:2024-11-01 Revised:2024-12-02 Online:2025-07-05 Published:2025-07-14

摘要: 本研究通过克隆、生物信息学和表达分析方法对杉木热激蛋白70(heat shock protein 70,HSP70)基因进行研究,为深入理解杉木HSP70基因的功能和杉木遗传改良以及其可持续栽培提供科学依据。本研究选用杉木优良无性系“洋061”一年生苗作为试验材料,利用逆转录聚合酶链式反应(RT-PCR)克隆得到ClHSP70基因。运用Expasy软件等在线软件预测并分析ClHSP70蛋白的理化性质、跨膜螺旋域、信号肽、二级结构和三级结构;运用Cell-PLoc 2.0在线软件预测蛋白的亚细胞定位;运用Mega 11软件构建系统发育树;克隆ClHSP70基因并构建到pCAMBIA35s-EGFP载体中,分析ClHSP70蛋白的亚细胞定位;并利用实时荧光定量PCR(quantitative real-time PCR)对其表达水平进行分析。克隆得到的ClHSP70基因编码670个氨基酸,ClHSP70蛋白的分子式为C3297H5306N940O1008S26,具有不稳定性,不含信号肽和跨膜区域,预测定位于细胞质。系统进化分析表明,杉木ClHSP70与欧榛Corylus avellana亲缘关系更为密切。亚细胞定位实验结果显示,ClHSP70蛋白定位于细胞核;qRT-PCR表达分析,ClHSP70基因在叶片中的相对表达量最高。ClHSP70基因在高温条件下6 h后相对表达量达到峰值,干旱处理12 h其表达量达到最大值,即ClHSP70基因受高温和干旱胁迫诱导上调表达。杉木ClHSP70基因的成功克隆与序列分析,揭示了其在杉木不同组织中的表达及对高温与干旱胁迫的响应,并为杉木抗逆性育种提供重要的理论基础。

关键词: 杉木, ClHSP70基因, 基因克隆, 亚细胞定位, 高温与干旱胁迫

Abstract: In this study, the Heat Shock Protein 70 (HSP70) gene of cedar was investigated by cloning, bioinformatics and expression analysis methods to provide a scientific basis for the in-depth understanding of the function of the HSP70 gene of cedar, as well as the genetic improvement and sustainable cultivation of cedar. The annual seedlings of the excellent Chinese fir asexual line “Yang 061” were selected as test materials, and the ClHSP70 gene was cloned by reverse transcription polymerase chain reaction (RT-PCR). The physicochemical properties, transmembrane helical domain, signal peptide, secondary structure and tertiary structure of ClHSP70 protein were predicted and analysed using Expasy software and other online software; the subcellular localization of the protein was predicted using Cell-PLoc 2.0 online software; Mega 11 software was used to construct a phylogenetic tree; the ClHSP70 gene was cloned and constructed into pCAMBIA35s-EGFP vector for analysis of ClHSP70 gene. EGFP vector to analyse the subcellular localisation of the ClHSP70 protein; and its expression level was analysed using Quantitative Real-time PCR (QRP). The cloned ClHSP70 gene encoded 670 amino acids, and the molecular formula of ClHSP70 protein was C3297H5306N904O1008S26, which was unstable, did not contain signal peptide and transmembrane region, and was predicted to be localised in the cytoplasm. Phylogenetic analysis showed that Chinese fir ClHSP70 was more closely related to hazelnut (Corylus avellana). The results of subcellular localisation experiments showed that ClHSP70 protein was localised in the nucleus. qRT-PCR expression analysis showed that the relative expression of ClHSP70 gene was the highest in the leaves, and the relative expression of ClHSP70 gene reached the peak after 6 h of high temperature, and the expression of ClHSP70 gene reached the maximum after 12 h of drought treatment, and the expression of ClHSP70 gene was up-regulated by the high temperature and drought stress induced. The ClHSP70 gene was up-regulated by high temperature and drought stress. The successful cloning and sequence analysis of the ClHSP70 gene in cedar revealed its expression in different tissues of cedar and its response to high temperature and drought, and provided an important theoretical basis for the breeding of cedar resistance.

Key words: Chinese fir, ClHSP70 gene, gene cloning, subcellular localization, high temperature and drought stress

中图分类号:  S722.8

[1] 江宇, 孙麟钧, 朱嘉宁,等. 中龄林修枝对杉木林林下植被和土壤肥力的影响[J]. 福建农林大学学报(自然科学版), 2024, 53(5): 641-648. DOI: 10.13323/j.cnki.j.fafu(nat.sci.).202310012.
[2] 林芳馨, 胥清利, 曲晓宇,等. 光环境差异对杉木幼林林下植被多样性及根系种间竞争的影响[J]. 西南林业大学学报, 2024,44(5): 35-43. DOI: 10.11929/j.swfu.202310013.
[3] 和莉, 严雨亭, 袁程昱,等. 不同林龄杉木人工林土壤病毒群落特征[J]. 应用生态学报, 2024, 35(9): 2543-2551. DOI: 10.13287/j.1001-9332.202409.007.
[4] 孙敏, 李树斌, 唐飘,等. 干旱胁迫对杉木无性系叶绿素荧光特性的影响[J]. 森林与环境学报, 2018, 38(2): 202-208. DOI: 10.13324/j.cnki.jfcf.2018.02.012.
[5] APOSTOLOVA E L. Molecular mechanisms of plant defense against abiotic stress[J]. International Journal of Molecular Sciences, 2023, 24(12): 10339. DOI: 10.3390/ijms241210339.
[6] YURINA N P. Heat shock proteins in plant protection from oxidative stress[J]. Molecular Biology, 2023, 57(6): 949-964. DOI: 10.1134/S0026893323060201.
[7] WANG W X, VINOCUR B, SHOSEYOV O, et al. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response[J]. Trends in Plant Science, 2004, 9(5): 244-252. DOI: 10.1016/j.tplants.2004.03.006.
[8] ZINN K E, TUNC-OZDEMIR M, HARPER J F. Temperature stress and plant sexual reproduction: uncovering the weakest links[J]. Journal of Experimental Botany, 2010, 61(7): 1959-1968. DOI: 10.1093/jxb/erq053.
[9] FLAHERTY K M, WILBANKS S M, DELUCA-FLAHERTY C, et al. Structural basis of the 70-kilodalton heat shock cognate protein ATP hydrolytic activity. II. Structure of the active site with ADP or ATP bound to wild type and mutant ATPase fragment[J]. The Journal of Biological Chemistry, 1994, 269(17): 12899-12907.
[10] MAYER M P, BUKAU B. Hsp70 chaperones: cellular functions and molecular mechanism[J]. CML-Cellularand Molecular Life Sciences, 2005, 62(6): 670-684. DOI: 10.1007/s00018-004-4464-6.
[11] ROSENZWEIG R, NILLEGODA N B, MAYER M P, et al. The Hsp70 chaperone network[J]. Nature Reviews Molecular Cell Biology, 2019, 20(11): 665-680. DOI: 10.1038/s41580-019-0133-3.
[12] ZHOU S J, JING Z, SHI J L, et al. Genome-wide identification, characterization, and expression analysis of the MLO gene family in Cucumis sativus[J]. Genetics and Molecular Research, 2013, 12(4): 6565-6578. DOI: 10.4238/2013.12.11.8.
[13] JIAO Q S, ZHANG M, ZADA A, et al.DJC78 is a cochaperone that interacts with cpHsc70-1 in the chloroplasts[J]. Biochemical and Biophysical Research Communicatious, 2022, 626: 236-2342. DOI: 10.1016/j.bbrc.2022.07.081.
[14] JUNGKUNZ I, LINK K, VOGEL F, et al.AtHsp70-15-deficient Arabidopsis plants are characterized by reduced growth, a constitutive cytosolic protein response and enhanced resistance to TuMV[J]. The Plant Journal, 2011, 66(6): 983-995. DOI: 10.1111/j.1365-313X.2011.04558.x.
[15] KUMAR A, SHARMA S, CHUNDURI V, et al. Genome-wide identification and characterization of heat shock protein family reveals role in development and stress conditions in Triticum aestivum L.[J]. Scientific Reports, 2020, 10(1): 7858. DOI: 10.1038/s41598-020-64746-2.
[16] MULAUDZI-MASUKU T, MUTEPE R D, MUKHORO O C, et al.Identification and characterization of a heat-inducible Hsp70 gene from Sorghum bicolor which confers tolerance to thermal stress[J]. Cell Stress and Chaperones, 2015, 20(5): 793-804. DOI: 10.1007/s12192-015-0591-2.
[17] WAHAB M M S, AKKAREDDY S, SHANTHI P, et al. Identification of differentially expressed genes under heat stress conditions in rice (Oryza sativa L.)[J]. Molecular Biology Reports, 2020,47(3): 1935-1948. DOI: 10.1007/s11033-020-05291-z.
[18] 苏江洪. 芍药HSP70基因克隆及其功能研究[D]. 扬州:扬州大学,2018.
[19] YER E N, BALOGLU M C, ZIPLAR U T, et al.Drought-responsive Hsp70 gene analysis in populus at genome-wide level[J]. Plant Molecular Biology Reporter, 2016, 34(2): 483-500. DOI: 10.1007/s11105-015-0933-3.
[20] 曹冰. 巴西橡胶树HSP70基因的克隆与表达分析[D]. 海口:海南大学,2014.
[21] 廖文海, 戴嘉豪, 李洋洋, 等. 杉木ClLSM基因的克隆及其对不同光质与非生物胁迫的响应[J]. 江西农业大学学报, 2023,45(1): 146-155. DOI: 10.13836/j.jjau.2023016.
[22] 张颖, 陈婉婷, 陈冉红,等. 杉木实时荧光定量PCR分析中内参基因的选择[J]. 林业科学研究, 2019, 32(2): 65-72. DOI: 10.13275/j.cnki.lykxyj.2019.02.010.
[23] 杨丽, 毛梦圆, 郭嘉龙,等. 杉木不同冠层高度的水力结构和光合特性[J]. 森林与环境学报, 2024,44(5): 468-475. DOI: 10.13324/j.cnki.jfcf.2024.05.003.
[24] 吴章明, 唐思莹, 宋思宇,等. 带状采伐初期对华西雨屏区杉木人工林土壤碳组分及稳定性的影响[J]. 四川农业大学学报,2024,42(4): 847-860, 878. DOI: 10.16036/j.issn.1000-2650.202401402.
[25] 江京辉, 周凡, 周永东,等. 杉木和辐射松锯材高温干燥对甲醛释放的影响[J]. 林业科学, 2020, 56(12): 130-135. DOI: 10.11707/j.1001-7488.20201215.
[26] FEIGE U, POLLA B S. Hsp70-a multi-gene, multi-structure, multi-function family with potential clinical applications[J]. Experientia, 1994, 50(11/12): 979-986. DOI: 10.1007/bf01923452.
[27] 祁茂冬, 谢鑫, 魏凤菊. 禾本科植物HSP70研究进展[J]. 植物生理学报, 2019, 55(8): 1054-1062. DOI: 10.13592/j.cnki.ppj.2019.0058.
[28] 顾颖慧. 龙须菜热激蛋白70(HSP70)基因克隆及热激下的表达模式分析[D]. 青岛:中国海洋大学,2011.
[29] WANG Z, ZOU Q, JIANG Y, et al.Review of protein subcellular localization prediction[J]. Current Bioinformatics, 2014, 9(3): 331-342. DOI: 10.2174/1574893609666140212000304.
[30] YU C S, CHEN Y C, LU C H, et al. Prediction of protein subcellular localization[J]. Proteins-Structure, Function, and Bioinformatics, 2006, 64(3): 643-651. DOI: 10.1002/prot.21018.
[31] ALMAGRO ARMENTEROS J J, SØNDERBY C K, SØNDERBY S K, et al.DeepLoc: prediction of protein subcellular localization using deep learning[J]. Bioinformatics, 2017, 33(21): 3387-3395. DOI: 10.1093/bioinformatics/btx431.
[32] SUNG D Y, KAPLAN F, GUY C L. Plant Hsp70 molecular chaperones: protein structure, gene family, expression and function[J]. Physiologia Plantarum, 2001, 113(4): 443-451. DOI: 10.1034/j.1399-3054.2001.1130402.x.
[33] YU C C, RONG M, LIU Y, et al. Genome-wide identification and characterization of HSP70 gene family in Aquilaria sinensis (Lour.) Gilg[J]. Genes, 2021, 13(1): 8. DOI: 10.3390/genes13010008.
[34] 阮文进, 门维婷, 马婧,等. 蜡梅热激蛋白基因Cp HSP70-1的克隆、亚细胞定位与表达分析[J]. 西南大学学报(自然科学版), 2016, 38(1): 43-52. DOI: 10.13718/j.cnki.xdzk.2016.01.007.
[35] 杜巧丽, 蒋君梅, 陈美晴,等. 水稻热休克蛋白HSP70基因克隆、表达分析及原核表达[J]. 植物保护学报, 2021,48(3): 620-629. DOI: 10.13802/j.cnki.zwbhxb.2021.2020193.
[36] 袁秀云, 许申平, 王默霏,等. 蝴蝶兰热激蛋白基因PhHsp70序列分析及对冷胁迫的响应[J]. 安徽农业大学学报, 2018,45(3): 519-525. DOI: 10.13610/j.cnki.1672-352x.20180620.010.
[37] 何玉琳, 吴杨, 叶子飘,等. 油茶叶片捕光色素分子内禀特性和光能利用效率对光照强度的响应[J]. 西北植物学报, 2022,42(9): 1552-1560. DOI: 10.7606/j.issn.1000-4025.2022.09.1552.
[38] 袁艳敏, 刘福利, 梁洲瑞,等. 海带hsp70基因的克隆、分析及转录水平定量研究[J]. 渔业科学进展, 2018, 39(4): 152-158. DOI: 10.19663/j.issn2095-9869.20170407001.
[39] 安艳秋, 蔺瑞明, 冯晶,等. 小麦热激蛋白基因TaHSP70克隆及其在植物防卫和抗逆反应中的表达分析[J]. 分子植物育种, 2011, 9(4): 402-409. DOI: 10.3969/mpb.009.000402.
[40] 李慧聪, 郭秀林, 王冬梅, 等. 玉米热激蛋白70基因对温度胁迫的响应[J]. 河北农业大学学报, 2010, 33(6): 12-15, 25. DOI: 10.3969/j.issn.1000-1573.2010.06.003.
[41] 李翠, 侯蕾, 任丽,等. 花生热激蛋白AhHSP70与热激因子AhHSF基因的克隆及表达分析[J]. 山东农业科学, 2015,47(4): 1-7. DOI: 10.14083/j.issn.1001-4942.2015.04.001.
[42] 陈二龙, 张明刚, 李成刚,等. 烟草Hsp70基因家族的鉴定及叶肉内CpHsp70基因的表达分析[J]. 吉林农业大学学报, 2019,41(5): 553-562. DOI: 10.13327/j.jjlau.2019.3967.
[43] 李玉言, 张泽人, 邸泽鑫,等. 花楸树HSP70基因家族鉴定及其应答非生物胁迫表达分析[J]. 基因组学与应用生物学, 2022,41(9): 1973-1984. DOI: 10.13417/j.gab.041.001973.
[44] 王占军, 汪虹妍, 杨妍萍,等. 油桐HSP70基因家族的全基因组鉴定与表达分析[J]. 江苏农业学报, 2024,40(5): 806-816. DOI: 10.3969/i.issn.1000-4440.2024.05.005.
[45] 胡秀丽, 李艳辉, 杨海荣,等. HSP70可提高干旱高温复合胁迫诱导的玉米叶片抗氧化防护能力[J]. 作物学报, 2010, 36(4): 636-644. DOI: 10.3724/SP.J.1006.2010.00636.
[46] GUO Y P, CHEN Q, QU Y Y, et al. Development and identification of molecular markers of GhHSP70-26 related to heat tolerance in cotton[J]. Gene, 2023, 874: 147486. DOI: 10.1016/j.gene.2023.147486.
[47] 凡超, 杨杰, 陈蓉,等. 荔枝HSP70家族鉴定及其响应非生物胁迫的表达分析[J]. 生物工程学报, 2024,40(4): 1102-1119. DOI: 10.13345/j.cjb.230450.
[48] AHMAD M Z, SHAH Z, ULLAH A, et al. Genome wide and evolutionary analysis of heat shock protein 70 proteins in tomato and their role in response to heat and drought stress[J]. Molecular Biology Reports, 2022,49(12): 11229-11241. DOI: 10.1007/s11033-022-07734-1.
[1] 左晓东, 汪星星, 许祖元, 郑宏, 曹光球, 曹世江. 不同林分密度对杉木林土壤特性及林下植被的影响[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 201-212.
[2] 罗洪林, 冯鹏霏, 余艳玲, 肖蕊, 潘传燕, 宋漫玲, 张永德. 卵形鲳鲹Myostatin基因克隆及其在胚胎发育中的表达分析[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 136-147.
[3] 周洁, 曾志鹏, 李金月, 陈俏媛, 林万华. HepG2细胞中SDR9C7蛋白的亚细胞定位研究[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 102-106.
[4] 易潭, 刘希良, 宾石玉, 王开卓, 吴萍, 褚武英, 陈韬. 鳜鱼Siniperca chuatsi红肌sMyHC1基因cDNA的克隆及其表达分析[J]. 广西师范大学学报(自然科学版), 2014, 32(2): 175-180.
[5] 王开卓, 宾石玉, 李虹辉, 李玉珑, 刘知行, 张建社, 褚武英. 翘嘴鳜生长抑制素基因的克隆及其表达分析[J]. 广西师范大学学报(自然科学版), 2013, 31(4): 109-114.
[6] 赵志常, 胡福初, 胡桂兵, 王惠聪, 杨转英, 苏纯兰, 李加强. 荔枝类黄酮糖基转移酶(UFGT)基因的克隆及其原核表达研究[J]. 广西师范大学学报(自然科学版), 2011, 29(4): 104-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 何安康, 陈艳平, 扈应, 黄瑞章, 秦永彬. 融合边界交互信息的命名实体识别方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 1 -11 .
[2] 卢展跃, 陈艳平, 杨卫哲, 黄瑞章, 秦永彬. 基于掩码注意力与多特征卷积网络的关系抽取方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 12 -22 .
[3] 齐丹丹, 王长征, 郭少茹, 闫智超, 胡志伟, 苏雪峰, 马博翔, 李时钊, 李茹. 基于主题多视图表示的零样本实体检索方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 23 -34 .
[4] 黄川洋, 程灿儿, 李松威, 陈鸿东, 张秋楠, 张钊, 邵来鹏, 唐剑, 王咏梅, 郭奎奎, 陆航林, 胡君辉. 带涂覆层的长周期光纤光栅温度传感特性研究[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 35 -42 .
[5] 田晟, 熊辰崟, 龙安洋. 基于改进PointNet++的城市道路点云分类方法[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 1 -14 .
[6] 黎宗孝, 张健, 罗鑫悦, 赵嶷飞, 卢飞. 基于K-means和Adam-LSTM的机场进场航迹预测研究[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 15 -23 .
[7] 宋铭楷, 朱成杰. 基于H-WOA-GWO和区段修正策略的配电网故障定位研究[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 24 -37 .
[8] 陈禹, 陈磊, 张怡, 张志瑞. 基于QMD-LDBO-BiGRU的风速预测模型[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 38 -57 .
[9] 韩烁, 江林峰, 杨建斌. 基于注意力机制PINNs方法求解圣维南方程[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 58 -68 .
[10] 李志欣, 匡文兰. 结合互注意力空间自适应和特征对集成判别的细粒度图像分类[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 69 -82 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发