|
|
广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (4): 213-223.doi: 10.16088/j.issn.1001-6600.2024110104
郭胜周1,2,3, 许祖元1,2,3, 刘荣林1,2,3, 林秦民4, 曹光球1,2,3, 曹世江1,2,3*
GUO Shengzhou1,2,3, XU Zuyuan1,2,3, LIU Ronglin1,2,3, LIN Qinmin4, CAO Guangqiu1,2,3, CAO Shijiang1,2,3*
摘要: 本研究通过克隆、生物信息学和表达分析方法对杉木热激蛋白70(heat shock protein 70,HSP70)基因进行研究,为深入理解杉木HSP70基因的功能和杉木遗传改良以及其可持续栽培提供科学依据。本研究选用杉木优良无性系“洋061”一年生苗作为试验材料,利用逆转录聚合酶链式反应(RT-PCR)克隆得到ClHSP70基因。运用Expasy软件等在线软件预测并分析ClHSP70蛋白的理化性质、跨膜螺旋域、信号肽、二级结构和三级结构;运用Cell-PLoc 2.0在线软件预测蛋白的亚细胞定位;运用Mega 11软件构建系统发育树;克隆ClHSP70基因并构建到pCAMBIA35s-EGFP载体中,分析ClHSP70蛋白的亚细胞定位;并利用实时荧光定量PCR(quantitative real-time PCR)对其表达水平进行分析。克隆得到的ClHSP70基因编码670个氨基酸,ClHSP70蛋白的分子式为C3297H5306N940O1008S26,具有不稳定性,不含信号肽和跨膜区域,预测定位于细胞质。系统进化分析表明,杉木ClHSP70与欧榛Corylus avellana亲缘关系更为密切。亚细胞定位实验结果显示,ClHSP70蛋白定位于细胞核;qRT-PCR表达分析,ClHSP70基因在叶片中的相对表达量最高。ClHSP70基因在高温条件下6 h后相对表达量达到峰值,干旱处理12 h其表达量达到最大值,即ClHSP70基因受高温和干旱胁迫诱导上调表达。杉木ClHSP70基因的成功克隆与序列分析,揭示了其在杉木不同组织中的表达及对高温与干旱胁迫的响应,并为杉木抗逆性育种提供重要的理论基础。
中图分类号: S722.8
| [1] 江宇, 孙麟钧, 朱嘉宁,等. 中龄林修枝对杉木林林下植被和土壤肥力的影响[J]. 福建农林大学学报(自然科学版), 2024, 53(5): 641-648. DOI: 10.13323/j.cnki.j.fafu(nat.sci.).202310012. [2] 林芳馨, 胥清利, 曲晓宇,等. 光环境差异对杉木幼林林下植被多样性及根系种间竞争的影响[J]. 西南林业大学学报, 2024,44(5): 35-43. DOI: 10.11929/j.swfu.202310013. [3] 和莉, 严雨亭, 袁程昱,等. 不同林龄杉木人工林土壤病毒群落特征[J]. 应用生态学报, 2024, 35(9): 2543-2551. DOI: 10.13287/j.1001-9332.202409.007. [4] 孙敏, 李树斌, 唐飘,等. 干旱胁迫对杉木无性系叶绿素荧光特性的影响[J]. 森林与环境学报, 2018, 38(2): 202-208. DOI: 10.13324/j.cnki.jfcf.2018.02.012. [5] APOSTOLOVA E L. Molecular mechanisms of plant defense against abiotic stress[J]. International Journal of Molecular Sciences, 2023, 24(12): 10339. DOI: 10.3390/ijms241210339. [6] YURINA N P. Heat shock proteins in plant protection from oxidative stress[J]. Molecular Biology, 2023, 57(6): 949-964. DOI: 10.1134/S0026893323060201. [7] WANG W X, VINOCUR B, SHOSEYOV O, et al. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response[J]. Trends in Plant Science, 2004, 9(5): 244-252. DOI: 10.1016/j.tplants.2004.03.006. [8] ZINN K E, TUNC-OZDEMIR M, HARPER J F. Temperature stress and plant sexual reproduction: uncovering the weakest links[J]. Journal of Experimental Botany, 2010, 61(7): 1959-1968. DOI: 10.1093/jxb/erq053. [9] FLAHERTY K M, WILBANKS S M, DELUCA-FLAHERTY C, et al. Structural basis of the 70-kilodalton heat shock cognate protein ATP hydrolytic activity. II. Structure of the active site with ADP or ATP bound to wild type and mutant ATPase fragment[J]. The Journal of Biological Chemistry, 1994, 269(17): 12899-12907. [10] MAYER M P, BUKAU B. Hsp70 chaperones: cellular functions and molecular mechanism[J]. CML-Cellularand Molecular Life Sciences, 2005, 62(6): 670-684. DOI: 10.1007/s00018-004-4464-6. [11] ROSENZWEIG R, NILLEGODA N B, MAYER M P, et al. The Hsp70 chaperone network[J]. Nature Reviews Molecular Cell Biology, 2019, 20(11): 665-680. DOI: 10.1038/s41580-019-0133-3. [12] ZHOU S J, JING Z, SHI J L, et al. Genome-wide identification, characterization, and expression analysis of the MLO gene family in Cucumis sativus[J]. Genetics and Molecular Research, 2013, 12(4): 6565-6578. DOI: 10.4238/2013.12.11.8. [13] JIAO Q S, ZHANG M, ZADA A, et al.DJC78 is a cochaperone that interacts with cpHsc70-1 in the chloroplasts[J]. Biochemical and Biophysical Research Communicatious, 2022, 626: 236-2342. DOI: 10.1016/j.bbrc.2022.07.081. [14] JUNGKUNZ I, LINK K, VOGEL F, et al.AtHsp70-15-deficient Arabidopsis plants are characterized by reduced growth, a constitutive cytosolic protein response and enhanced resistance to TuMV[J]. The Plant Journal, 2011, 66(6): 983-995. DOI: 10.1111/j.1365-313X.2011.04558.x. [15] KUMAR A, SHARMA S, CHUNDURI V, et al. Genome-wide identification and characterization of heat shock protein family reveals role in development and stress conditions in Triticum aestivum L.[J]. Scientific Reports, 2020, 10(1): 7858. DOI: 10.1038/s41598-020-64746-2. [16] MULAUDZI-MASUKU T, MUTEPE R D, MUKHORO O C, et al.Identification and characterization of a heat-inducible Hsp70 gene from Sorghum bicolor which confers tolerance to thermal stress[J]. Cell Stress and Chaperones, 2015, 20(5): 793-804. DOI: 10.1007/s12192-015-0591-2. [17] WAHAB M M S, AKKAREDDY S, SHANTHI P, et al. Identification of differentially expressed genes under heat stress conditions in rice (Oryza sativa L.)[J]. Molecular Biology Reports, 2020,47(3): 1935-1948. DOI: 10.1007/s11033-020-05291-z. [18] 苏江洪. 芍药HSP70基因克隆及其功能研究[D]. 扬州:扬州大学,2018. [19] YER E N, BALOGLU M C, ZIPLAR U T, et al.Drought-responsive Hsp70 gene analysis in populus at genome-wide level[J]. Plant Molecular Biology Reporter, 2016, 34(2): 483-500. DOI: 10.1007/s11105-015-0933-3. [20] 曹冰. 巴西橡胶树HSP70基因的克隆与表达分析[D]. 海口:海南大学,2014. [21] 廖文海, 戴嘉豪, 李洋洋, 等. 杉木ClLSM基因的克隆及其对不同光质与非生物胁迫的响应[J]. 江西农业大学学报, 2023,45(1): 146-155. DOI: 10.13836/j.jjau.2023016. [22] 张颖, 陈婉婷, 陈冉红,等. 杉木实时荧光定量PCR分析中内参基因的选择[J]. 林业科学研究, 2019, 32(2): 65-72. DOI: 10.13275/j.cnki.lykxyj.2019.02.010. [23] 杨丽, 毛梦圆, 郭嘉龙,等. 杉木不同冠层高度的水力结构和光合特性[J]. 森林与环境学报, 2024,44(5): 468-475. DOI: 10.13324/j.cnki.jfcf.2024.05.003. [24] 吴章明, 唐思莹, 宋思宇,等. 带状采伐初期对华西雨屏区杉木人工林土壤碳组分及稳定性的影响[J]. 四川农业大学学报,2024,42(4): 847-860, 878. DOI: 10.16036/j.issn.1000-2650.202401402. [25] 江京辉, 周凡, 周永东,等. 杉木和辐射松锯材高温干燥对甲醛释放的影响[J]. 林业科学, 2020, 56(12): 130-135. DOI: 10.11707/j.1001-7488.20201215. [26] FEIGE U, POLLA B S. Hsp70-a multi-gene, multi-structure, multi-function family with potential clinical applications[J]. Experientia, 1994, 50(11/12): 979-986. DOI: 10.1007/bf01923452. [27] 祁茂冬, 谢鑫, 魏凤菊. 禾本科植物HSP70研究进展[J]. 植物生理学报, 2019, 55(8): 1054-1062. DOI: 10.13592/j.cnki.ppj.2019.0058. [28] 顾颖慧. 龙须菜热激蛋白70(HSP70)基因克隆及热激下的表达模式分析[D]. 青岛:中国海洋大学,2011. [29] WANG Z, ZOU Q, JIANG Y, et al.Review of protein subcellular localization prediction[J]. Current Bioinformatics, 2014, 9(3): 331-342. DOI: 10.2174/1574893609666140212000304. [30] YU C S, CHEN Y C, LU C H, et al. Prediction of protein subcellular localization[J]. Proteins-Structure, Function, and Bioinformatics, 2006, 64(3): 643-651. DOI: 10.1002/prot.21018. [31] ALMAGRO ARMENTEROS J J, SØNDERBY C K, SØNDERBY S K, et al.DeepLoc: prediction of protein subcellular localization using deep learning[J]. Bioinformatics, 2017, 33(21): 3387-3395. DOI: 10.1093/bioinformatics/btx431. [32] SUNG D Y, KAPLAN F, GUY C L. Plant Hsp70 molecular chaperones: protein structure, gene family, expression and function[J]. Physiologia Plantarum, 2001, 113(4): 443-451. DOI: 10.1034/j.1399-3054.2001.1130402.x. [33] YU C C, RONG M, LIU Y, et al. Genome-wide identification and characterization of HSP70 gene family in Aquilaria sinensis (Lour.) Gilg[J]. Genes, 2021, 13(1): 8. DOI: 10.3390/genes13010008. [34] 阮文进, 门维婷, 马婧,等. 蜡梅热激蛋白基因Cp HSP70-1的克隆、亚细胞定位与表达分析[J]. 西南大学学报(自然科学版), 2016, 38(1): 43-52. DOI: 10.13718/j.cnki.xdzk.2016.01.007. [35] 杜巧丽, 蒋君梅, 陈美晴,等. 水稻热休克蛋白HSP70基因克隆、表达分析及原核表达[J]. 植物保护学报, 2021,48(3): 620-629. DOI: 10.13802/j.cnki.zwbhxb.2021.2020193. [36] 袁秀云, 许申平, 王默霏,等. 蝴蝶兰热激蛋白基因PhHsp70序列分析及对冷胁迫的响应[J]. 安徽农业大学学报, 2018,45(3): 519-525. DOI: 10.13610/j.cnki.1672-352x.20180620.010. [37] 何玉琳, 吴杨, 叶子飘,等. 油茶叶片捕光色素分子内禀特性和光能利用效率对光照强度的响应[J]. 西北植物学报, 2022,42(9): 1552-1560. DOI: 10.7606/j.issn.1000-4025.2022.09.1552. [38] 袁艳敏, 刘福利, 梁洲瑞,等. 海带hsp70基因的克隆、分析及转录水平定量研究[J]. 渔业科学进展, 2018, 39(4): 152-158. DOI: 10.19663/j.issn2095-9869.20170407001. [39] 安艳秋, 蔺瑞明, 冯晶,等. 小麦热激蛋白基因TaHSP70克隆及其在植物防卫和抗逆反应中的表达分析[J]. 分子植物育种, 2011, 9(4): 402-409. DOI: 10.3969/mpb.009.000402. [40] 李慧聪, 郭秀林, 王冬梅, 等. 玉米热激蛋白70基因对温度胁迫的响应[J]. 河北农业大学学报, 2010, 33(6): 12-15, 25. DOI: 10.3969/j.issn.1000-1573.2010.06.003. [41] 李翠, 侯蕾, 任丽,等. 花生热激蛋白AhHSP70与热激因子AhHSF基因的克隆及表达分析[J]. 山东农业科学, 2015,47(4): 1-7. DOI: 10.14083/j.issn.1001-4942.2015.04.001. [42] 陈二龙, 张明刚, 李成刚,等. 烟草Hsp70基因家族的鉴定及叶肉内CpHsp70基因的表达分析[J]. 吉林农业大学学报, 2019,41(5): 553-562. DOI: 10.13327/j.jjlau.2019.3967. [43] 李玉言, 张泽人, 邸泽鑫,等. 花楸树HSP70基因家族鉴定及其应答非生物胁迫表达分析[J]. 基因组学与应用生物学, 2022,41(9): 1973-1984. DOI: 10.13417/j.gab.041.001973. [44] 王占军, 汪虹妍, 杨妍萍,等. 油桐HSP70基因家族的全基因组鉴定与表达分析[J]. 江苏农业学报, 2024,40(5): 806-816. DOI: 10.3969/i.issn.1000-4440.2024.05.005. [45] 胡秀丽, 李艳辉, 杨海荣,等. HSP70可提高干旱高温复合胁迫诱导的玉米叶片抗氧化防护能力[J]. 作物学报, 2010, 36(4): 636-644. DOI: 10.3724/SP.J.1006.2010.00636. [46] GUO Y P, CHEN Q, QU Y Y, et al. Development and identification of molecular markers of GhHSP70-26 related to heat tolerance in cotton[J]. Gene, 2023, 874: 147486. DOI: 10.1016/j.gene.2023.147486. [47] 凡超, 杨杰, 陈蓉,等. 荔枝HSP70家族鉴定及其响应非生物胁迫的表达分析[J]. 生物工程学报, 2024,40(4): 1102-1119. DOI: 10.13345/j.cjb.230450. [48] AHMAD M Z, SHAH Z, ULLAH A, et al. Genome wide and evolutionary analysis of heat shock protein 70 proteins in tomato and their role in response to heat and drought stress[J]. Molecular Biology Reports, 2022,49(12): 11229-11241. DOI: 10.1007/s11033-022-07734-1. |
| [1] | 左晓东, 汪星星, 许祖元, 郑宏, 曹光球, 曹世江. 不同林分密度对杉木林土壤特性及林下植被的影响[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 201-212. |
| [2] | 罗洪林, 冯鹏霏, 余艳玲, 肖蕊, 潘传燕, 宋漫玲, 张永德. 卵形鲳鲹Myostatin基因克隆及其在胚胎发育中的表达分析[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 136-147. |
| [3] | 周洁, 曾志鹏, 李金月, 陈俏媛, 林万华. HepG2细胞中SDR9C7蛋白的亚细胞定位研究[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 102-106. |
| [4] | 易潭, 刘希良, 宾石玉, 王开卓, 吴萍, 褚武英, 陈韬. 鳜鱼Siniperca chuatsi红肌sMyHC1基因cDNA的克隆及其表达分析[J]. 广西师范大学学报(自然科学版), 2014, 32(2): 175-180. |
| [5] | 王开卓, 宾石玉, 李虹辉, 李玉珑, 刘知行, 张建社, 褚武英. 翘嘴鳜生长抑制素基因的克隆及其表达分析[J]. 广西师范大学学报(自然科学版), 2013, 31(4): 109-114. |
| [6] | 赵志常, 胡福初, 胡桂兵, 王惠聪, 杨转英, 苏纯兰, 李加强. 荔枝类黄酮糖基转移酶(UFGT)基因的克隆及其原核表达研究[J]. 广西师范大学学报(自然科学版), 2011, 29(4): 104-110. |
|
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |