广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (4): 22-31.doi: 10.16088/j.issn.1001-6600.2023101703

• 综述 • 上一篇    下一篇

灵长类运动功能形态学研究进展

孙涛1,2,3, 牛文鑫4,5, 李兆元6, 周岐海1,2,3*, 黄乘明1,2,3,7*   

  1. 1.珍稀濒危动植物生态与环境保护教育部重点实验室(广西师范大学),广西 桂林 541006;
    2.广西珍稀濒危动物生态学重点实验室(广西师范大学),广西 桂林 541006;
    3.崇左白头叶猴野外科学观测研究站,广西 崇左 532204;
    4.同济大学 附属养志康复医院,上海 201619;
    5.同济大学 医学院康复工程与生物力学实验室,上海 200092;
    6.西南林业大学 地理与生态旅游学院,云南 昆明 650224;
    7.中国科学院动物研究所 动物生态与保护生物学重点实验室,北京 100101
  • 收稿日期:2023-10-17 修回日期:2023-12-06 出版日期:2024-07-25 发布日期:2024-09-05
  • 通讯作者: 黄乘明(1963—), 男,广西桂林人, 中国科学院动物研究所研究员, 博士。E-mail:cmhuang@ioz.ac.cn;周岐海(1976—), 男, 广西贵港人, 广西师范大学教授, 博士。E-mail:zhouqh@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(32270504, 32170492); 广西自然科学基金(2019GXNSFDA245021)

Advances in Functional Morphology of Locomotion in Primates

SUN Tao1,2,3, NIU Wenxin4,5, LI Zhaoyuan6, ZHOU Qihai1,2,3*, HUANG Chengming1,2,3,7*   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. Guangxi Key Laboratory of Rare and Endangered Animal Ecology (Guangxi Normal University), Guilin Guangxi 541006, China;
    3. The Chongzuo White-headed Langur Field Observation and Research Station of Guangxi, Chongzuo Guangxi 532204, China;
    4. Yangzhi Rehabilitation Hospital, Tongji University, Shanghai 201619, China;
    5. Laboratory of Rehabilitation Engineering and Biomechanics, School of Medicine, Tongji University, Shanghai 200092, China;
    6. College of Geography and Ecotourism, Southwest Forestry University, Kunming Yunnan 650224, China;
    7. Key Laboratory of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2023-10-17 Revised:2023-12-06 Online:2024-07-25 Published:2024-09-05

摘要: 功能形态学是研究功能和形态相互适应的学科。灵长类(包括非人灵长类和人类)在动物界是一个极其特殊的类群,其在形态、生理、行为上表现出很强的环境适应能力,使它们常常成为生态学问题研究的模式动物。为适应多样化栖息环境,灵长类发展形成不同的运动模式,其骨骼和肌肉系统也相应进化以适应不同的运动模式。非人灵长类与人类在生态位、社会结构、地理分布以及进化上密切相关,开展其运动功能形态学研究不仅有助于了解灵长类的生态与适应,而且对深入了解运动功能进化在人类进化中所发挥的作用也具有重要参考价值。本文总结灵长类运动功能形态学的发展历史,深入探讨灵长类的运动模式及与之相适应的骨骼、肌肉系统的特征和功能。未来,新技术和新方法不断融入灵长类的运动功能形态学研究,将进一步丰富人们对灵长类的了解,揭示其结构和功能的适应与进化规律。

关键词: 灵长类, 运动, 功能形态学, 适应

Abstract: Functional morphology is the study of the mutual adaptation of function and form. Primates (including human and non-human primates) are an extremely special group in the animal kingdom. They show strong adaptability to the environment in terms of morphology, physiology, and behavior, making them often as model animals for the study of ecological issues. In order to adapt to the diverse habitats, primates have evolved different locomotion patterns, and their skeletal and muscular systems have also evolved accordingly to adapt to different locomotion patterns. At the same time, primates are similar to humans in ecological niche, social structure, geographical distribution and evolution. Research on the functional morphology of their locomotion will not only help to understand the ecology and adaptation of primates, but also provide an understanding on the role of motor functions played in human evolution. This paper summarizes the development history of functional morphology of locomotion in primates and explores the movement patterns of primates and the corresponding characteristics and functions of the skeletal and muscular systems. In the future, new technologies and methods will continue to be integrated into the study of locomotion functional morphology in primates, which will further enrich people’s understanding of primates and reveal the adaptation and evolution rules of their structures and functions.

Key words: primates, locomotion, functional morphology, adaptation

中图分类号:  Q98

[1] GROVES C P. Primatr taxonomy[M]. Washington, DC: Smithsonian Institution Press, 2001.
[2] FLEAGLE J G. Primate adaptation and evolution[M]. 3rd ed. San Diego: Academic Press, 2013.
[3] MITTERMEIER R A, RYLANDS A B, WILSON D E. Handbook of the mammals of the world: Vol. 3: Primates[M]. Barcelona, E S: Lrnx Edicions, 2013.
[4] BEGUN D R, KIVELL T L. Knuckle-walking in Sivapithecus? The combined effects of homology and homoplasy with possible implications for pongine dispersals[J]. Journal of Human Evolution, 2011, 60(2): 158-170. DOI: 10.1016/j.jhevol.2010.10.002.
[5] LARSON S G. Nonhuman primate locomotion[J]. America Journal of Physical Anthropology, 2018, 165(4): 705-725. DOI: 10.1002/ajpa.23368.
[6] LARSON S G, STERN J T, Jr. Role of supraspinatus in the quadrupedal locomotion of vervets (Cercopithecus aethiops): implications for interpretation of humeral morphology[J]. American Journal of Physical Anthropology, 1989, 79(3): 369-377. DOI: 10.1002/ajpa.1330790313.
[7] LARSON S G. Functional morphology of the shoulder in primates[M] //GEBO D L. Postcranial Adaptation in Non-Human Primates, Dekalb: Northern Illinois University Press, 1993: 45-69.
[8] NESBITT R A. Positional behavior of Rhinopithecus[J]. American Journal of Physical Anthropology, 1989, 78: 279-280.
[9] REMIS M. Effects of body size and social context on the arboreal activities of lowland gorillas in the Central African Republic[J]. American Journal of Physical Anthropology, 1995, 97(4): 413-433. DOI: 10.1002/ajpa.1330970408.
[10] BEZANSON M. Primate positional behavior development and evolution[J]. Annual Review of Anthropology, 2018, 46: 279-298. DOI: 10.1146/annurev-anthro-102116-041503.
[11] YOUNG J W, SHAPIRO L J. Developments in development: what have we learned from primate locomotor ontogeny?[J]. American Journal of Physical Anthropology, 2018, 165(suppl 65): 37-71. DOI: 10.1002/ajpa.23388.
[12] CAMPBELL B. The shoulder musculature of the platyrrhine monkeys[J]. Journal of Mammalogy, 1937, 18(1): 66-71. DOI: 10.2307/1374310.
[13] OXNARD C E. The functional morphology of the primate shoulder as revealed by comparative anatomical, osteometric and discriminant function techniques[J]. American Journal of Physical Anthropology, 1967, 26(2): 219-240. DOI: 10.1002/ajpa.1330260209.
[14] 潘汝亮, 彭燕章, 叶智彰. 短尾猴与猕猴肩胛骨的比较研究[J]. 解剖学报, 1990, 21(2): 113-118.
[15] 俞发宏, 叶智彰, 潘汝亮, 等. 懒猴肩关节的多变量分析[J]. 动物学研究, 1993, 14(2): 102-109.
[16] PAN R, OXNARD C. Cranial morphology of the golden monkey (Rhinopithecus) and douc langur (Pygathrix nemaeus)[J]. Human Evolution, 2001, 16(3): 199-223. DOI: 10.1007/BF02437412.
[17] PÜSCHEL T A, SELLERS W I. Standing on the shoulders of apes: analyzing the form and function of the hominoid scapula using geometric morphometrics and finite element analysis[J]. American Journal of Physical Anthropology, 2016, 159(2): 325-341. DOI: 10.1002/ajpa.22882.
[18] O’NEILL M C, UMBERGER B R, HOLOWKA N B, et al. Chimpanzee super strength and human skeletal muscle evolution[J]. Proceedings of the Natiional Academy of Sciences of the United State of America, 2017, 114(28): 7343-7348. DOI: 10.1073/pnas.1619071114.
[19] HARMON E H. The shape of the hominoid proximal femur: a geometric morphometric analysis[J]. Journal of Anatomy, 2007, 210(2): 170-185. DOI: 10.1111/j.1469-7580.2006.00688.x.
[20] GRANATOSKY M C. A review of locomotor diversity in mammals with analyses exploring the influence of substrate-use, body mass and intermembral index in primates[J]. Journal of Zoology, 2018, 306(4): 207-216. DOI: 10.1111/jzo.12608.
[21] MA C, FAN P F. Effect of substrate type on langur positional repertoire[J]. Global Ecology and Conservation, 2020, 22: e00956. DOI: 10.1016/j.gecco.2020.e00956.
[22] ANAPOL F, GRAY J P. Fiber architecture of the intrinsic muscles of the shoulder and arm in semiterrestrial and arboreal guenons[J]. American Journal of Physical Anthropology, 2003, 122(1): 51-65. DOI: 10.1002/ajpa.10269.
[23] GÜNTHER M M, ISHIDA H, KUMAKURA H, et al. The jump as a fast mode of locomotion in arboreal and terrestrial biotopes[J]. Zeitschrift Fur Morphologie und Anthropologie, 1991, 78(3): 341-372. DOI: 10.1127/zma/78/1991/341.
[24] SCHMITT D. Forelimb mechanics during arboreal and terrestrial quadrupedalism in old world monkeys[M] //STRASSER E, FLEAGLE J G, ROSENBERGER A L, et al. Primate Locomotion. Boston: Springer, 1998: 175-200.
[25] SCHMITT D. Mediolateral reaction forces and forelimb anatomy in quadrupedal primates: implications for interpreting locomotor behavior in fossil primates[J]. Journal of Human Evolution 2003, 44(1): 47-58. DOI: 10.1016/S0047-2484(02)00165-3.
[26] HUNT K D. Mechanical implications of chimpanzee positional behavior[J]. American Journal of Physical Anthropology, 1991, 86(4): 521-536. DOI: 10.1002/ajpa.1330860408.
[27] SHEA B T, INOUYE S E. Knuckle-walking ancestors[J]. Science, 1993, 259(5093): 293-294. DOI: 10.1126/science. 293.5093.293.6.
[28] MORBECK M E, Positional behavior, selective use of habitat substrate and associated non-positional behavior in free-ranging Colobus guereza (Rüppel, 1835)[J]. Primates, 1977, 18(1): 35-58. DOI: 10.1007/BF02382952.
[29] TUTTLE R H. Knuckle-walking and the problem of human origins[J]. Science, 1969, 166(3908): 953-961. DOI: 10.1126/science.166.3908.953.
[30] TUTTLE R H, BASMAJIAN J V. Electromyography of pongid shoulder muscles II. Deltoid, rhomboid and “rotator cuff”[J]. American Journal of Physical Anthropology, 1978, 49(1): 47-56. DOI: 10.1002/ajpa.1330490109.
[31] BOINSKI S. The positional behavior and substrate use of squirrel monkeys: ecological implications[J]. Journal of Humman Evolution, 1989, 18(7): 659-677. DOI: 10.1016/0047-2484(89)90099-7.
[32] MYATT J P, CROMPTON R H, PAYNE-DAVIS R C, et al. Functional adaptations in the forelimb muscles of non-human great apes[J]. Journal of Anatomy, 2012, 220(1): 13-28. DOI: 10.1111/j.1469-7580.2011.01443.x.
[33] RAICHLEN D A, PONTZER H, SHAPIRO L J, et al. Understanding hind limb weight support in chimpanzees with implications for the evolution of primate locomotion[J]. American Journal of Physical Anthropology, 2009, 138(4): 395-402. DOI: 10.1002/ajpa.20952.
[34] STERN J T, Jr, WELLS J P, JUNGERS W L, et al. An electromyographic study of the pectoralis major in atelines and Hylobates, with special reference to the evolution of a pars clavicularis[J]. American Journal of Physical Anthropology, 1980, 52(1): 13-26. DOI: 10.1002/ajpa.1330520104.
[35] VANGOR A K, WELLS J P. Muscle recruitment and the evolutionof bipedality: evidence from telemetered electromyography of spider, woolly and patas monkeys[J]. Annaul Scientific Nature of Zoology, 1983, 5: 125-135.
[36] TAKAHASHI L K. Morphological basis of arm-swinging: multivariate analyses of the forelimbs of Hylobates and Ateles[J]. Folia Primatologica, 1990, 54(1/2): 70-85. DOI: 10.1159/000156427.
[37] BYRON C D, COVERT H H. Unexpected locomotor behaviour: brachiation by an old world monkey (Pygathrix nemaeus) from Vietnam[J]. Journal of Zoology, 2004, 263(1): 101-106. DOI: 10.1017/S0952836904004935.
[38] GEBO D L, SARGIS E J. Terrestrial adaptations in the postcranial skeletons of guenons[J]. American Journal of Physical Anthropology, 1994, 93(3): 341-371. DOI: 10.1002/ajpa.1330930306.
[39] GEBO D L, CHAPMAN C A. Positional behavior in five sympatric old world monkeys[J]. American Journal of Physical Anthropology, 1995, 97(1): 49-76. DOI: 10.1002/ajpa.1330970105.
[40] GEBO D L. Climbing, brachiation, and terrestrial quadrupedalism: historical precursors of hominid bipedalism[J]. American Journal of Physical Anthropology, 1996, 101(1): 55-92. DOI: 10.1002/(SICI)1096-8644(199609)101:1<55::AID-AJPA5>3.0.CO;2-C.
[41] DIOGO R, POTAU J M, PASTOR J F, et al. Photographic and descriptive musculoskeletal atlas of gibbons and siamangs, (Hylobates)[M]. Bota Raton: CRC Press, 2012.
[42] TAYLOR A B. Scapula form and biomechanics in gorillas[J]. Journal of Human Evolution, 1997, 33(5): 529-553. DOI: 10.1006/jhev.1997.0147.
[43] JUNGERS W L, STERN J T. Preliminary electromyographical analysis of brachiation in gibbon and spider monkey[J]. International Journal of Primatology, 1981, 2(1): 19-33. DOI: 10.1007/BF02692297.
[44] JUNGERS W L. Scaling of the hominoid locomotor skeleton with special reference to lesser apes[C] //Body size and scaling of limb proportions in primates. New York: Plenum Press, 1984: 341-381.
[45] KAGAYA M. Gleniohumeral joint surface characters and its relation to forelimb suspensory behavior in three ateline primates, Ateles, Lagothrix, and Alouatta[J]. Anthropological Science, 2007, 115(1): 17-23. DOI: 10.1537/ase.041209.
[46] OISHI M, OGIHARA N, ENDO H, et al. Muscle architecture of the upper limb in the orangutan[J]. Primates, 2008, 49(3):204-209. DOI: 10.1007/s10329-008-0082-5.
[47] OISHI M, OGIHARA N, ENDO H, et al. Dimensions of forelimb muscles in orangutans and chimpanzees[J]. Journal of Anatomy, 2009, 215(4): 373-382. DOI: 10.1111/j.1469-7580.2009.01125.x.
[48] SWARTZ S M, BERTRAM J E A, BIEWENER A A. Telemetered in vivo strain analysis of locomotor mechanics of brachiating gibbons[J]. Nature, 1989, 342(6247): 270-272. DOI: 10.1038/342270a0.
[49] AMADI H O, HANSEN U N, WALLACE A L, et al. A scapular coordinate frame for clinical and kinematic analyses[J]. Journal of Biomechnics, 2008, 41(10): 2144-2149. DOI: 10.1016/j.jbiomech.2008.04.028.
[50] VAN DER HELM F C T. Analysis of the kinematic and dynamic behavior of the shoulder mechanism[J]. Journal of Biomechanics, 1994, 27(5): 527-550. DOI: 10.1016/0021-9290(94)90064-7.
[51] VEEGER H E J, VAN DER HELM F C T, VAN DER WOUDE L H V, et al. Inertia and muscle contraction parameters for musculoskeletal modelling of the shoulder mechanism[J]. Journal of Biomechanics, 1991, 24(7): 615-629. DOI: 10.1016/0021-9290(91)90294-W.
[52] ISHIDA H, KIMURA T, OKADA M, et al. Kinesiological aspects of bipedal walking in gibbons[C] //The Lesser Apes: Evolutionary and Behavioural Biology. Edinburgh: Edinburgh Press, 1984.
[53] YAMAZAKI N, ISHIDA H. A biomechanical study of vertical climbing and bipedal walking in gibbons[J]. Journal of Human Evolution, 1984, 13(7): 563-571. DOI: 10.1016/S0047-2484(84)80028-7.
[54] DVIR Z, BERME N. The shoulder complex in elevation of the arm: A mechanism approach[J]. Journal of Biomechanics, 1978, 11(5): 219-225. DOI: 10.1016/0021-9290(78)90047-7.
[55] ROBERTS D. Form and function of the primate scapula[D]. New Haven: Yale University, 1973.
[56] POTAU J M, ARTELLS R, BELLO G, et al. Expression of myosin heavy chain isoforms in the supraspinatus muscle of different primate species: Implications for the study of the adaptation of primate shoulder muscles to different locomotor modes[J]. International Journal of Primatology, 2011, 32(4): 931-944. DOI: 10.1007/s10764-011-9512-0.
[57] JOHNSON G R, SPALDING D, NOWITZKE A, et al. Modelling the muscles of the scapula morphometric and coordinate data and functional implications[J]. Journal of Biomechanics, 1996, 29(8): 1039-1051. DOI: 10.1016/0021-9290(95)00176-X.
[58] ROSE M D. Quadrupedalism in primates[J]. Primates, 1973, 14(4): 337-357. DOI: 10.1007/BF01731356.
[59] LARSON S G, STERN J T, Jr. EMG of scapulahumeral muscles in the chimpanzee during reaching and “arboreal” locomotion[J]. America Journal of Anatomy, 1986, 176(2): 171-190. DOI: 10.1002/aja.1001760207.
[60] LARSON S G, STERN J T, Jr. Rotator cuff muscle function and its relation to scapular morphology in apes[J]. Journal of Human Evolution, 2013, 65(4): 391-403. DOI: 10.1016/j.jhevol.2013.07.010.
[61] BAILEY K E, PAMPUSH J D. Intrageneric shape variation of douc langur scapula (Genus Pygathrix.)[J]. Vietnamese Journal of Primatology, 2015, 2(4): 25-32.
[62] SU D F, JABLONSKI N G. Locomotor behavior and skeletal morphology of the odd-nosed monkeys[J]. Folia Primatologica, 2009, 80(3): 189-219. DOI: 10.1159/000240967.
[63] SARRINGHAUS L, LEWTON K L, IQBAL S,et al. Ape femoral-humeral rigidities and arboreal locomotion[J]. American Journal of Biological Anthropology, 2022, 179(4): 624-639. DOI: 10.1002/ajpa.24632.
[64] CHAN L K. Scapular position in primates[J]. Folia Primatologica, 2007, 78(1): 19-35. DOI: 10.1159/000095683.
[65] PREUSCHOFT H, HOHN B, SCHERF H, et al. Functional analysis of the primate shoulder[J]. International Journal of Primatology, 2010, 31(2): 301-320. DOI: 10.1007/s10764-010-9399-1.
[66] SCHMIDT M, KRAUSE C. Scapula movements and their contribution to three-dimensional forelimb excursions in quadrupedal primates[M] //D′AOÛT K, VEREECKE E E. Primate locomotion. New York: Springer, 2011: 83-108. DOI: 10.1007/978-1-4419-1420-0_6.
[67] GREEN D J, ALESEGED Z. Australopithecus afarensis scapular ontogeny, function, and the role of climbing in human evolution[J]. Science, 2012, 338(6106): 514-517. DOI: 10.1126/science.1227123.
[68] BAILEY K E, LAD S E, PAMPUSH J D. Functional morphology of the douc langur (Pygathrix spp.) scapula[J]. American Journal of Primatology, 2017, 79(6): 22646. DOI: 10.1002/ajp.22646.
[69] YOUNG N. Modularity and integration in the hominoid scapula[J]. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution, 2004, 302(3): 226-240. DOI: 10.1002/jez.b.21003.
[70] YOUNG N M. A comparison of the ontogeny of shape variation in the anthropoid scapula: Functional and phylogenetic signal[J]. American Journal of Physical Anthropology, 2008, 136(3): 247-264. DOI: 10.1002/ajpa.20799.
[71] BELLO-HELLEGOUARCH G, POTAU J M, ARIAS-MARTORELL J, et al. A comparison of qualitative and quantitative methodological approaches to characterizing the dorsal side of the scapula in hominoidea and its relationship to locomotion[J]. International Journal of Primatolology, 2013, 34(2): 315-336. DOI: 10.1007/s10764-013-9660-5.
[72] MICHILSENS F, VEREECKE E E, D’AOÛT K, et al. Functional anatomy of the gibbon forelimb: adaptations to a brachiating lifestyle[J]. Journal of Anatomy, 2009, 215(3): 335-354. DOI: 10.1111/j.1469-7580.2009.01109.x.
[73] WRIGHT K A, STEVENS N J, COVERT H H, et al. Comparisons of suspensory behaviors among Pygathrix cinerea, P. nemaeus, and Nomascus leucogenys in Cuc Phuong National Park, Vietnam[J]. International Journal of Primatology, 2008, 29(6): 1467-1480. DOI: 10.1007/s10764-008-9319-9.
[74] DEMES B, LARSON S G, STERN J T, Jr, et al. The kinetics of primate quadrupedalism: “hindlimb drive” reconsidered[J]. Journal of Human Evolution, 1994, 26(5/6): 353-374. DOI: 10.1006/jhev.1994.1023.
[75] DEMES B, JUNGERS W L, GROSS T S, et al. Kinetics of leaping primates: influence of substrate orientation and compliance[J]. American Journal of Physical Anthropology, 1995, 96(4): 419-429. DOI: 10.1002/ajpa.1330960407.
[76] VIOSIN J L. Clavicle, a neglected bone: morphology and relation to arm movements and shoulder architecture in primates[J]. The Anatomical Record, 2006, 288A(9): 944-953.DOI: 10.1002/ar.a.20354.
[77] JENKINS F A, Jr, DOMBROWSKI P J, GORDON E P. Analysis of the shoulder in brachiating spider monkeys[J]. American Journal of Physical Anthropology, 1978, 48(1): 65-76. DOI: 10.1002/ajpa.1330480110.
[78] MARCHI D, RIMOLDI A, GARCÍA-MARTÍNEZ D, et al. Morphologicla correlates of distal fibular morphology with locomotion in great apes, humans, and Australopithecus afarensis[J]. American Journal of Biological Anthropology, 2022, 178(2): 286-300. DOI: 10.1002/ajpa.24507.
[1] 赵小梅, 丁勇, 王海涛. 基于改进帝王蝶算法的最大似然DOA估计[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 131-140.
[2] 许伦辉, 李金龙, 李若南, 陈俊宇. 基于动态生成对抗网络的路网缺失交通数据修复[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 30-40.
[3] 李依洋, 曾才斌, 黄在堂. 分数Brown运动驱动的具有壁附着的恒化器模型的随机吸引子[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 61-68.
[4] 张伟健, 邴其春, 沈富鑫, 胡嫣然, 高鹏. 城市快速路路段行程时间估计方法[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 49-57.
[5] 赵中华, 晏晓锋, 童有为. 基于自适应渐消扩展卡尔曼滤波的锂离子电池SOC估计[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 58-66.
[6] 李婷, 徐正会, 李彪, 翟奖, 韩秀, 张新民. 四川大凉山东部地区蚂蚁物种分布特征[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 174-191.
[7] 王喜敏, 袁杰, 寇巧媛. 一种基于多策略的改进黏菌算法[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 98-108.
[8] 陆媚静, 范鹏来, 孙涛, 周岐海. 非人灵长类动物肠道寄生虫与宿主相互作用的研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 354-365.
[9] 蒋瑞, 徐娟, 李强. 基于跨域均值逼近的轴承剩余使用寿命预测[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 121-131.
[10] 李松涛, 李群宏, 张文. 三自由度碰撞振动系统的余维二擦边分岔与混沌控制[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 79-92.
[11] 董小燕, 梁秋芳, 冯平. CYP2D亚家族基因在灵长类动物中的药物代谢及进化研究[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 131-138.
[12] 徐庆婷, 张兰芳, 朱新华. 综合语义技术与LSTM神经网络的主观题自适应评卷方法[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 51-61.
[13] 程瑞, 何明先, 钟春英, 罗树毅, 武正军. 野生与人工繁育鳄蜥游泳能力比较[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 79-86.
[14] 焦萌倩, 彭如月, 黄文韬, 蒋贵荣. 外激和参激作用下的三角翼飞行器滚转运动的随机响应[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 34-41.
[15] 叶青, 黄强, 聂斌, 李欢. 一种自适应的高维离群点识别方法[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 107-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵洁, 宋爽, 武斌. 图像USM锐化取证与反取证技术综述[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 1 -16 .
[2] 艾聪聪, 龚国利, 焦小雨, 田露, 盖中朝, 缑敬轩, 李慧. 毕赤酵母作为基础研究的新兴模式生物研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 17 -26 .
[3] 翟言豪, 王燕舞, 李强, 李景坤. 基于CiteSpace的三维荧光光谱技术对内陆水体中溶解性有机质研究的进展[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 34 -46 .
[4] 陈丽, 唐明珠, 郭胜辉. 智能汽车信息物理系统状态估计与执行器攻击重构[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 59 -69 .
[5] 李成乾, 石晨, 邓敏艺. 基于元胞自动机的Brugada综合征患者心电信号研究[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 86 -98 .
[6] 吕辉, 吕卫峰. 基于改进YOLOv5的眼底出血点检测算法[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 99 -107 .
[7] 易见兵, 彭鑫, 曹锋, 李俊, 谢唯嘉. 多尺度特征融合的点云配准算法研究[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 108 -120 .
[8] 李莉, 李昊泽, 李涛. 基于Raft的多主节点拜占庭容错共识机制[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 121 -130 .
[9] 赵小梅, 丁勇, 王海涛. 基于改进帝王蝶算法的最大似然DOA估计[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 131 -140 .
[10] 朱艳, 蔡静, 龙芳. 逐步Ⅰ型混合截尾下复合Rayleigh分布竞争失效产品部分步加寿命试验的统计分析[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 159 -169 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发