广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (2): 19-26.doi: 10.16088/j.issn.1001-6600.2022042205

• 综述 • 上一篇    下一篇

废旧锂离子电池回收利用技术进展

杨生龙1,2, 母庆闯1,2, 张志华1,2, 刘葵1,2*   

  1. 1.广西低碳能源材料重点实验室(广西师范大学),广西 桂林 541004;
    2.广西师范大学 化学与药学学院,广西 桂林 541004
  • 收稿日期:2022-04-22 修回日期:2022-08-15 出版日期:2023-03-25 发布日期:2023-04-25
  • 通讯作者: 刘葵(1969—),女,湖南宁乡人,广西师范大学教授,博士。E-mail:lku009@163.com
  • 基金资助:
    国家自然科学基金(22178075);广西重点研发计划(桂科AB22035070)

Technical Progress in Recovery and Utilization of Spent Lithium-ion Batteries

YANG Shenglong1,2, MU Qingchuang1,2, ZHANG Zhihua1,2, LIU Kui1,2*   

  1. 1. Guangxi Key Laboratory of Low-Carbon Energy Materials (Guangxi Normal University), Guilin Guangxi 541004, China;
    2. School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2022-04-22 Revised:2022-08-15 Online:2023-03-25 Published:2023-04-25

摘要: 近年来,锂离子电池的广泛应用导致废旧锂离子电池数量急剧增加,回收废旧锂离子电池可以缓解资源短缺和环境污染双重压力。本文从废旧锂离子电池预处理、活性物质回收及再生等方面对废旧锂离子电池回收利用现有的技术进行总结,并对废旧锂离子电池回收技术的未来发展进行展望。

关键词: 废旧锂离子电池, 回收, 正极材料, 负极材料, 再生

Abstract: The widely-use of lithium-ion batteries leads to the rapid growth of spent lithium-ion batteries. Recycling of spent lithium-ion batteries can relieve the dual pressure of resource shortage and environmental pollution. This paper summarizes the technologies of recycling of spent lithium-ion batteries from the aspects of pretreatment of spent lithium-ion batteries, recovery of metal elements, and regeneration of positive and negative active materials. The future development of recycling technology is prospected.

Key words: spent lithium-ion batteries, recycling, cathode material, anode material, regeneration

中图分类号: 

  • TF11
[1] NAYAKA G P, PAI K V, MANJANNA J, et al. Use of mild organic acid reagents to recover the Co and Li from spent Li-ion batteries[J]. Waste Management, 2016, 51: 234-238.DOI: 10.1016/j.wasman.2015.12.008.
[2] HARPER G, SOMMERVILLE R, KENDRICK E, et al. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019, 575: 75-86.DOI: 10.1038/s41586-019-1682-5.
[3] GAO W F, LIU C M, CAO H B, et al. Comprehensive evaluation on effective leaching of critical metals from spent lithium-ion batteries[J]. Waste Management, 2018, 75: 477-485.DOI: 10.1016/j.wasman.2018.02.023.
[4] QU X, CAI M Y, ZHANG B L, et al. A vapor thermal approach to selective recycling of spent lithium-ion batteries[J]. Green Chemistry, 2021, 23: 8673-8684.DOI: 10.1039/D1GC03036A.
[5] YU J D, HE Y Q, LI H, et al. Effect of the secondary product of semi-solid phase Fenton on the flotability of electrode material from spent lithium-ion battery[J]. Powder Technology, 2017, 315: 139-146.DOI: 10.1016/j.powtec.2017.03.050.
[6] ASSEFI M, MAROUFI S, YAMAUCHI Y, et al. Pyrometallurgical recycling of Li-ion, Ni-Cd and Ni-MH batteries: a minireview[J]. Current Opinion in Green and Sustainable Chemistry, 2020, 24: 26-31.DOI: 10.1016/j.cogsc.2020.01.005.
[7] MA Y Y, TANG J J, WANALDI R, et al. A promising selective recovery process of valuable metals from spent lithium ion batteries via reduction roasting and ammonia leaching[J]. Journal of Hazardous Materials, 2021, 402: 123491.DOI: 10.1016/j.jhazmat.2020.123491.
[8] LÜ W G, WANG Z H, CAO H B, et al. A critical review and analysis on the recycling of spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6: 1504-1521.DOI: 10.1021/acssuschemeng.7b03811.
[9] ZENG X L, LI J H. Implications for the carrying capacity of lithium reserve in China[J]. Resources Conservation and Recycling, 2013, 80: 58-63.DOI: 10.1016/j.resconrec.2013.08.003.
[10] ZENG X L, LI J H. On the sustainability of cobalt utilization in China[J]. Resources, Conservation and Recycling, 2015, 104: 12-18.DOI: 10.1016/j.resconrec.2015.09.014.
[11] ZENG X L, LI J H, SHEN B Y. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid[J]. Journal of Hazardous Materials, 2015, 295: 112-118.DOI: 10.1016/j.jhazmat.2015.02.064.
[12] 钟雪虎, 焦芬, 刘桐, 等. 废旧锂离子电池回收工艺概述[J]. 电池, 2018, 48(1): 63-67.DOI: 10.19535/j.1001-1579.2018.01.017.
[13] FAN E S, LI L, WANG Z P, et al. Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects[J]. Chemical Reviews. 2020, 120(14): 7020-7063.DOI: 10.1021/acs.chemrev.9b00535.
[14] WANG Y Q, AN N, WEN L, et al. Recent progress on the recycling technology of Li-ion batteries[J]. Journal of Energy Chemistry, 2021,55(4): 391-419.DOI: 10.1016/j.jechem.2020.05.008.
[15] LI L, ZHANG X X, LI M, et al. The recycling of spent lithium-ion batteries: a review of current processes and technologies[J]. Electrochemical Energy Reviews, 2018,1(4): 461-482.DOI: 10.1007/s41918-018-0012-1.
[16] SHI Y, ZHANG M H, MENG Y S, et al. Ambient-pressure relithiation of degraded LixNi0.5Co0.2Mn0.3O2 (0<x<1) via eutectic solutions for direct regeneration of lithium-ion battery cathodes[J].Advanced Energy Materials, 2019, 9: 1900454.DOI: 10.1002/aenm.201900454.
[17] LAI Y M, ZHU X Q, LI J, et al. Efficient recovery of valuable metals from cathode materials of spent LiCoO2 batteries via co-pyrolysis with cheap carbonaceous materials[J]. Waste Management, 2022, 148: 12-21.DOI: 10.1016/j.wasman.2022.05.017.
[18] LI J, LAI Y M, ZHU X Q, et al. Pyrolysis kinetics and reaction mechanism of the electrode materials during the spent LiCoO2 batteries recovery process[J]. Journal of Hazardous Materials, 2020, 398: 122955.DOI: 10.1016/j.jhazmat.2020.122955.
[19] 潘英俊.以磷酸铁锂为正极材料的废旧锂离子电池回收及再利用[D]. 哈尔滨: 哈尔滨工业大学,2012.
[20] 王泽峰. 废锂电池中钴的回收技术研究[D]. 北京: 清华大学, 2008.
[21] 严红. 废旧锂离子电池电解液的回收方法: CN201310290286.7[P]. 2013-07-10.
[22] 金泳勋, 松田光明, 董晓辉, 等. 用浮选法从废锂离子电池中回收锂钴氧化物[J]. 国外金属矿选矿, 2003, 40(7): 32-37.
[23] YAMAJI Y, DODBIBA G, MATSUO S. A novel flow sheet for processing of used lithium-ion batteries for recycling[J]. Resources Processing, 2011, 58(1): 9-13.DOI: 10.4144/rpsj.58.9.
[24] HE Y Q, ZHANG T, WANG F F, et al. Recovery of LiCoO2 and graphite from spent lithium-ion batteries by Fenton reagent-assisted flotation[J]. Journal of Cleaner Production, 2017, 143: 319-325.DOI: 10.1016/j.jclepro.2016.12.106.
[25] HAGELÜKEN C. Recycling of electronic scrap at Umicore's integrated metals smelter and refinery[J]. World of Metallurgy-Erzmetall,2006,59(3):152-161.
[26] ZHANG P W, YOKOYAMA T, ITABASHI O, et al. Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries[J]. Hydrometallurgy, 1998, 47(2/3): 259-271.DOI: 10.1016/S0304-386X(97)00050-9.
[27] LI L, GE J, WU F, et al. Recovery of cobalt and lithium from spent lithium-ion batteries using organic citric acid as leachant[J]. Journal of Hazardous Materials, 2010, 176(1/2/3): 288-293.DOI: 10.1016/j.jhazmat.2009.11.026.
[28] 杨海波, 梁辉, 黄继承, 等.从废旧锂离子电池中回收制备LiCoO2的结构与性能研究[J].稀有金属材料与工程,2006,35(5): 836-840.
[29] 刘帆, 周有池, 王林生, 等. 从废旧锂离子电池提钴后液中回收锂[J]. 无机盐工业, 2017,49(2): 50-53.
[30] 张阳, 满瑞林, 王辉, 等. 综合回收废旧锂电池中有价金属的研究[J]. 稀有金属, 2009, 33(6): 931-935.DOI: 10.3969/j.issn.0258-7076.2009.06.032.
[31] 何汉兵, 秦毅红. 有机溶剂分离废旧锂离子电池[J]. 电源技术, 2006, 30(5): 380-382,390.
[32] NAYL A A, HAMED M M, RIZK S E. Selective extraction and separation of metal values from leach liquor of mixed spent Li-ion batteries[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 55: 119-125.DOI: 10.1016/j.jtice.2015.04.006.
[33] SATTAR R, ILYAS S, BHATTI H N, et al.Resource recovery of critically-rare metals by hydrometallurgical recycling of spent lithium ion batteries[J]. Separation and Purification Technology, 2019, 209: 725-733.DOI: 10.1016/j.seppur.2018.09.019.
[34] HU J T, ZHANG J L, LI H X, et al. A promising approach for the recovery of high value-added metals from spent lithium-ion batteries[J]. Journal of Power Sources, 2017, 351: 192-199.DOI: 10.1016/j.jpowsour.2017.03.093.
[35] INNOCENZI V, IPPOLITO N M, MICHELIS I, et al. A review of the processes and lab-scale techniques for the treatment of spent rechargeable NiMH batteries[J]. Journal of Power Sources, 2017, 362: 202-218. DOI: 10.1016/j.jpowsour.2017.07.034.
[36] 徐筱群, 满瑞林, 张建, 等. 电解剥离-生物质酸浸回收废旧锂电池[J]. 中国有色金属学报, 2014, 24(10): 2576-2581.DOI: 10.19476/j.ysxb.1004.0609.2014.10.020.
[37] LI L, CHEN R J, SUN F, et al. Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process[J]. Hydrometallurgy, 2011, 108(3/4): 220-225.
[38] MYOUNG J, JUNG Y, LEE J, et al. Cobalt oxide preparation from waste LiCoO2 by electrochemical-hydrothermal method[J]. Journal of Power Sources, 2002, 112(2): 639-642.DOI: 10.1016/S0378-7753(02)00459-7.
[39] LÜ W G, RUAN D S, ZHENG X H, et al. One-step recovery of valuable metals from spent lithium-ion batteries and synthesis of persulfate through paired electrolysis[J]. Chemical Engineering Journal, 2021, 421: 129908.DOI: 10.1016/j.cej.2021.129908.
[40] LIU K, YANG S L, LAI F Y, et al. Innovative electrochemical strategy to recovery of cathode and efficient lithium leaching from spent lithium-ion batteries[J]. ACS Applied Energy Materials, 2020, 3(5): 4767-4776.DOI: 10.1021/acsaem.0c00395.
[41] 王晓峰, 孔祥华, 赵增营. 锂离子电池中贵重金属的回收[J]. 电池, 2001, 31(1): 14-15.
[42] 冯佳, 章骅, 邵立明, 等. 废旧锂离子电池中钴的离子交换法回收[J]. 环境卫生工程, 2008, 16(6): 1-3.
[43] MISHRA D, KIM D J, RALPH D E, et al. Bioleaching of metals from spent lithium-ion secondary batteries using Acidithiobacillus ferrooxidans[J]. Waste Management, 2008, 28: 333-338.DOI: 10.1016/j.wasman.2007.01.010.
[44] 李长东, 余海军, 陈清后. 从废旧锂电池中回收制备三元正极材料的研究[J]. 资源再生, 2011(8): 62-65.
[45] 胥亚楠, 汪晓峰, 李佳, 等. 低温热处理法回收的钴酸锂应用于碱性二次电池的性能研究[J]. 南开大学学报(自然科学版), 2016, 49(3): 7-11.
[46] 刘云建, 胡启阳, 李新海, 等.废旧锂离子电池中LiCoO2的回收合成及电化学行为研究[J]. 中国有色金属学会会刊, 2007, 17(A2): 902-906.
[47] GUO Y, LI F, ZHU H C, et al. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl)[J]. Waste Management, 2016, 51: 227-233.DOI: 10.1016/j.wasman.2015.11.036.
[48] CHEN X F, ZHU Y Z, PENG W C, et al. Direct exfoliation of the anode graphite of used Li-ion batteries into few-layer graphene sheets: a green and high yield route to high-quality graphene preparation[J]. Journal of Materials Chemistry A, 2017, 5 (12): 5880-5893.DOI: 10.1039/C7TA00459A.
[49] ZHANG W X, LIU Z P, XIA J, et al. Preparing graphene from anode graphite of spent lithium-ion batteries[J]. Frontiers of Environmental Science & Engineering, 2017, 11(5): 6-12.DOI: 10.1007/s11783-017-0993-8.
[50] ZHAO L L, LIU X Y, WAN C Y, et al. Soluble graphene nanosheets from recycled graphite of spent lithium ion batteries[J]. Journal of Materials Engineering and Performance, 2018, 27(2): 875-880.DOI: 10.1007/s11665-018-3156-6.
[51] NATARAJAN S, RAO EDE S, BAJAJ H C, et al. Environmental benign synthesis of reduced graphene oxide (rGO) from spent lithium-ion batteries(LIBs) graphite and its application in supercapacitor[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 543: 98-108.DOI: 10.1016/j.colsurfa.2018.01.054.
[52] CAO Z Q, ZHENG X H, CAO H B, et al. Efficient reuse of anode scrap from lithium-ion batteries as cathode for pollutant degradation in electro-Fenton process: role of different recovery processes[J]. Chemical Engineering Journal, 2018, 337: 256-265.DOI: 10.1016/j.cej.2017.12.104.
[53] NATARAJAN S, BAJAJ H C. Recovered materials from spent lithium-ion batteries (LIBs) as adsorbents for dye removal: equilibrium, kinetics and mechanism[J]. Journal of Environmental Chemical Engineering, 2016, 4(4): 4631-4643.DOI: 10.1016/j.jece.2016.10.024.
[54] MA Z, ZHUANG Y C, DENG Y M, et al. From spent graphite to amorphous sp2+sp3 carbon-coated sp2graphite for high-performance lithium ion batteries[J]. Journal of Power Sources, 2018, 376: 91-99.DOI: 10.1016/j.jpowsour.2017.11.038.
[1] 李付绍, 徐应仙, 武青青, 邓明森. 固相反应制备Li2FeSiO4/C及嵌/脱锂性能研究[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 154-162.
[2] 李淑一, 韦煜明, 彭华勤. 含Ornstein-Uhlenbeck过程的随机SIS传染病模型[J]. 广西师范大学学报(自然科学版), 2020, 38(4): 74-81.
[3] 李海燕, 韦煜明, 彭华勤. 具有双疾病的随机SIRS传染病模型的灭绝性与持久性分析[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 144-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周正春. 互补序列研究进展[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 1 -16 .
[2] 杨烁祯, 张珑, 王建华, 张恒远. 声音事件检测综述[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 1 -18 .
[3] 李康良, 邱彩雄, 何爽, 黄春华, 伍冠一. 白介素-31参与瘙痒的研究进展[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 27 -35 .
[4] 卢许孟, 南新元, 夏斯博. 无模型坐标补偿积分滑模约束的自动驾驶汽车轨迹跟踪控制[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 36 -48 .
[5] 张伟健, 邴其春, 沈富鑫, 胡嫣然, 高鹏. 城市快速路路段行程时间估计方法[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 49 -57 .
[6] 杨秀, 韦笃取. 基于单状态变量的永磁同步电机混沌跟踪控制[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 58 -66 .
[7] 赵媛, 宋树祥, 刘振宇, 岑明灿, 蔡超波, 蒋品群. 一种新型电流镜运算跨导放大器的设计[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 67 -75 .
[8] 王鲁娜, 杜洪波, 朱立军. 基于流形正则的堆叠胶囊自编码器优化算法[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 76 -85 .
[9] 赵明, 罗秋莲, 陈蔚萌, 陈嘉妮. 控制时机和力度对传染病传播的影响[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 86 -97 .
[10] 杨秀凤, 范江华. 向量平衡问题强有效解集的连通性[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 98 -105 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发